[Seiichi Kirikami]:
Dear friends,
Let ABC be a triangle and Ia, Ib, Ic its excenters.
Denote:
Ja, Jb, Jc = the incenters of IaBC, IbCA, IcAB.
l, n, m = the Euler lines of IaJbJc, JaIbJc, IaIbIc.
l, m, n concur in a point P.
Search number of triangle {6, 9, 13} =5.0703580242..
I do not have the coordinates of P yet.
See the attachment.
Best regards, Seiichi.
[APH]:Dear Seiichi,Inspired from your construction:Let ABC be a triangle and OaObOc the antipedal triangle of O (tangential triangle).Denote:Ha, Hb, Hc = the orthocenters of OaBC, ObCA, OcAB, resp.The Euler lines of OaHbHc, ObHcHa, OcHaHb and ABCare concurrent.
Antreas P. Hatzipolakis[Seiichi Kirikami]:Dear Antreas,
1st barycentric coordinate of your problem (the antipedal triangle of O) =
-a^8 (b^2 + c^2) + 2 a^4 b^2 c^2 (b^2 + c^2) + (b^2 - c^2)^4 (b^2 + c^2) -
2 a^2 (b^2 - c^2)^2 (b^4 + c^4) + 2 a^6 (b^4 - b^2 c^2 + c^4).
Best regard, Seiichi Kirikami
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου