Τετάρτη 30 Οκτωβρίου 2019

ADGEOM 1205 * ADGEOM 1212 * ADGEOM 1213 * ADGEOM 1214

#1205
 
Dear friends,
 
T_aT_bT_c is the extouch triangle of ABC.
Erect perpendicular segments A'T_a, B'T_b, C'T_c on the extouch points such that
A'T_a = B'T_b = C'T_c = radius of incircle of ABC. (See image attached)
Then, AA', BB', CC' concur. 
 
Is this known?
 
Regards,
Emmanuel.
emmanuel antonio josgarca
 
#1212
 
Dear friends,
 
Let A" be the reflection of A' wrt T_a. Define B'', C''  cyclically.
The incenter is on the circle define by A'', B'', C'' .
 
Best regards,
Emmanuel.
 
#1213

Dear Emmanuel,
A''  is the reflection of I in the perpendicular bisector of BC. Therefore, OA'' = OI. Similarly, OB'' = OC'' = OI.
A'', B'', C'',  and I are on a circle, center O.
Best regards
Sincerely
Paul Yiu

#1214
Dear Paul Yiu,
 
Thank you very much.
 
Best regards,
Emmanuel.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου