#4383
Dear Geometers!
Let ABC be a triangle, the lines through X13 perpendicular to BC meets AX14 at A'; the line through X14 perspendicular to BC meets AX13 at A''. Define B', C', B'', C'' cyclically.
Then A'B'C' and A''B''C'' are two new equilateral triangle.
Which is centroids of these triangle in ETC?
Best regards
Sincerely
Dao Thanh Oai
-------------------------------------------------------------
#4386
The centroids of the triangles A'B'C' and A''B''C'' are X(15) and X(16), respec.
Angel Montesdeoca
-------------------------------------------------------------
#4389
Dear Mr Dao Thanh Oai,
----------------------------------------------------------------------------
#4392
Dear Mr Hung and Mr Oai,
Homothetic centers are:
P1 = (A’B’C’, outer-Napoleon) = X(2)X(14) ∩ X(3)X(13)
= -2*sqrt(3)*S*a^2+5*a^4-7*(b^2+c^2)*a^2+2*(b^2-c^2)^2 : : (barys)
= 7*S^2+sqrt(3)*(SB+SC)*S-3*SB*SC : : (barys)
= on lines: {2, 14}, {3, 13}, {4, 5352}, {5, 5238}, {6, 5054}, {16, 396}, {18, 3526}, {30, 10645}, {61, 140}, {62, 631}, {203, 5432}, {298, 11132}, {299, 618}, {303, 3643}, {381, 11480}, {397, 3530}, {398, 632}, {547, 5321}, {624, 11299}, {629, 633}, {630, 11290}, {1606, 3131}, {3104, 7786}, {3111, 14182}, {3201, 5012}, {3364, 5420}, {3365, 5418}, {3390, 15765}, {3523, 5237}, {3524, 10646}, {3533, 10187}, {3534, 12816}, {3582, 10638}, {3584, 7051}, {3851, 10188}, {4045, 11298}, {5070, 5339}, {5318, 8703}, {5335, 15692}, {5350, 12103}, {5433, 7005}, {5444, 7052}, {5463, 5569}, {5470, 6772}, {5474, 9735}, {5642, 10658}, {6669, 11303}, {6694, 11308}, {6774, 9117}, {6778, 12042}, {7619, 9761}, {7761, 11297}, {9116, 9885}, {10124, 11543}, {10182, 11244}, {11134, 13339}, {11268, 15330}, {11481, 15693}, {11485, 15694}, {11486, 15701}, {11489, 15709}, {11542, 12100}
= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (2, 617, 623), (2, 13083, 5464), (396, 549, 16), (397, 3530, 5351), (619, 5981, 5464), (619, 6671, 2)
= [ 2.9030202383909050, 2.5290443728959210, 0.5499321137221704 ]
P2 = (A”B”C”, inner-Napoleon) = X(2)X(13) ∩ X(3)X(14)
= 2*sqrt(3)*S*a^2+5*a^4-7*(b^2+c^2)*a^2+2*(b^2-c^2)^2 : : (barys)
= 7*S^2-sqrt(3)*(SB+SC)*S-3*SB*SC : : (barys)
= on lines: {2, 13}, {3, 14}, {4, 5351}, {5, 5237}, {6, 5054}, {15, 395}, {17, 3526}, {30, 10646}, {61, 631}, {62, 140}, {202, 5432}, {298, 619}, {299, 11133}, {302, 3642}, {381, 11481}, {397, 632}, {398, 3530}, {547, 5318}, {623, 11300}, {629, 11289}, {630, 634}, {1250, 3582}, {1605, 3132}, {2306, 5442}, {3105, 7786}, {3111, 14178}, {3200, 5012}, {3364, 15765}, {3389, 5420}, {3390, 5418}, {3523, 5238}, {3524, 10645}, {3533, 10188}, {3534, 12817}, {3851, 10187}, {4045, 11297}, {5070, 5340}, {5321, 8703}, {5334, 15692}, {5349, 12103}, {5433, 7006}, {5464, 5569}, {5469, 6775}, {5473, 9736}, {5642, 10657}, {6670, 11304}, {6695, 11307}, {6771, 9115}, {7619, 9763}, {7761, 11298}, {10124, 11542}, {10182, 11243}, {11137, 13339}, {11267, 15330}, {11480, 15693}, {11485, 15701}, {11486, 15694}, {11488, 15709}, {11543, 12100}
= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (2, 616, 624), (2, 13084, 5463), (395, 549, 15), (398, 3530, 5352), (618, 5980, 5463), (618, 6672, 2)
= [ 8.2105967007085710, 5.4179799383431200, -3.8997508757340440 ]
· {P1,P2} are harmonic-conjugates w/r to {X(6), X(5054)}
· The center of inverse-similitude of A’B’C’ and A”B”C” is X(98)
César Lozada
----------------------------------------------------------------------------
#4393
Thank you very much Mr Lozada,
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου