#4864
----------------------------------------------------------------
#4898
I will keep your notation P0 = X(176)
The perspector (ABC, Pa1Pb1Pc1) = P1 = X(482)
Now I will add another conjecture to your configuration:
If the perspector (ABC, PanPbnPcn) = Pn then
Pn = { X(7), Pn-1}-harmonic conjugate of Pn-2, for n>=2
= (a-b+c)*(a+b-c)*((n+1)*S+a*(-a+b+c)) : : (barys)
= on the Soddy line X(1)X(7)
A short sequence of Pn:
P2 = {X(7), X(482)}-HARMONIC CONJUGATE OF X(176)
= (a+b-c)*(a-b+c)*(3*S+a*(-a+b+c)) : : (barys)
= on lines: {1, 7}, {226, 3591}, {8965, 17092}
= {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (7, 176, 175), (7, 482, 176), (7, 17802, 1374), (7, 17805, 481), (175, 17804, 176), (176, 482, 17804), (481, 482, 1371), (481, 1371, 17805), (482, 1373, 7), (1371, 17805, 176), (1374, 17802, 17801), (17801, 17802, 175)
= [ 0.9611927715408633, 0.9994235592967669, 2.5051284309139110 ]
P3 = X(1373) = {X(7), P2}-HARMONIC CONJUGATE OF X(482)
P4 = {X(7), X(1373)}-HARMONIC CONJUGATE OF P2
= (a+b-c)*(a-b+c)*(5*S+a*(-a+b+c)) : : (barys)
= on the line {1, 7}
= {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1, 17804, 176), (7, 482, 175), (7, 17804, 17801), (7, 17805, 1374), (175, 482, 176), (176, 17801, 1), (481, 482, 17806), (482, 1374, 17805), (1374, 17805, 175)
= [ 0.8875351968257142, 0.9296281795105022, 2.5874441129421630 ]
P5 = {X(7), P4}-HARMONIC CONJUGATE OF X(1373)
= (a+b-c)*(a-b+c)*(6*S+a*(-a+b+c)) : : (barys)
= on lines: {1, 7}, {226, 10194}, {553, 5393}, {3982, 13389}, {4114, 13388}, {4654, 5405}, {5589, 7613}
= {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (7, 176, 1374), (7, 482, 481), (7, 1373, 482), (17802, 17804, 17806)
= [ 0.8667352026601208, 0.9099188217431049, 2.6106890502421740 ]
César Lozada
PD: Do you have an easy method for finding X(176) in a given triangle?
Note: It seems that a sequence of perspective triangles is found if X(176) is instead of X(1).
----------------------------------------------------------------
#4801
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου