#4942
----------------------------------------------------------------
#4943
Dear Emmanuel, I changed the labels of the points of your problem:
Let ABC be a triangle of incenter I, the perpendicular by I to AI intersects AC and AB in Ab and Ac, respectively.
The points Bc, Ba, Ca and Cb are defined cyclically.
The circles (AbBaBc), (BcCbCa) and (CaAcAb) concur in P.
The circles (AbBaAc), (BcCbBa) and (CaAcCb) cuncur in U.
Points P and U form a bicentric pair (http://faculty.evansville.edu/ck6/encyclopedia/BicentricPairs.html),
P = f(a,b,c) : f(b,c,a) : f(c,a,b) and Q = f(a,c,b) : f(b,a,c) : f(c,b,a)
with
f(a,b,c) = a (a-b-c) (b-c) (2 a^2-2 a b-a c+b c-c^2) (a^2+a b-2 b^2-2 a c+b c+c^2).
** The bicentric sum of P and U is:
S = a (b-c)^2 (b+c-a)^2 (5 a^2-4 a (b+c)-(b-c)^2) : .... : ....
S lies on lines X(i)X(j) for these {i, j}: {926,2170}, {2246,4845}, {3119,3900}, {4162,7004}.
(6 - 9 - 13) - search numbers of S: (3.01760078443673, 3.25289748021838, -0.00408028952222515).
** The bicentric difference of P and U is:
D = a (b-c) (4 a^2-5 a (b+c)+b^2+4 b c+c^2) : ...: ....
D is the midpoint of X(i) and X(j), for these {i, j}: {1,2254}, {145,3716}, {513,4162}, {519,14430}, {663,14077}, {891,3251}, {905,4959}, {1635,3722}, {2814,16200}, {2832,10699}, {3244,3762}, {3295,8648}, {3900,14414}, {8572,20315}.
D is the reflection of X(i) in X(j), for these {i, j}: {2254,14413}, {14413,1}.
D lies on lines X(i)X(j) for these {i, j}: {1,2254}, {145,3716}, {513,4162}, {519,14430}, {663,14077}, {891,3251}, {905,4959}, {1635,3722}, {2814,16200}, {2832,10699}, {3244,3762}, {3295,8648}, {3900,14414}, {8572,20315}.
(6 - 9 - 13) - search numbers of D: (5.41971934778287, 0.657342198122180, 0.684172491923085).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου