#2795
Dear Geometers
I found a strange property of Euler lines as follow.
Given triangle ABC and a point P.
PA,PB,PC intersect the circle (PBC),(PCA),(PAB) at D,E,F
Euler lines of DBC,ECA,FAB cut BC,CA,AB at X,Y,Z, respectively
Then X,Y,Z, are collinear. The line XYZ also passes through the centroid of triangle ABC.
Is this known?
Best regard
Sincerely
Ngo Quang Duong
---------------------------------
#2799
Dear Ngo Quang Duong,
---------------------------------
#2800
The three Euler lines are concurrent (at a point on the circumcircle of ABC) if only if P lies on Euler-Morley quintic (Q003 in related curves of Bernard Gibert).
Writing Q as Q(P)=Intersection of the three lines of Euler , the occurrence of {i,j} in the following list means that Q(X(i)) = X(j): {1, 100}, {2, 1296}, {4, 110}, {1113, 1114}, {1114, 1113}.
Q(X(1156))=(a/((b - c) (a^2 + b^2 + 4 b c + c^2 - 2 a (b + c))):...:...)
Best regards,
Angel Montesdeoca
---------------------------------
#2801
---------------------------------
#2803
Dear Angel, Ngo Quang Duong and Tsihong Lau,
Let ABC be a triangle and I its incenter.
Denote:
D= the antigonal conjugate of A wrt IBC.
E= the antigonal conjugate of B wrt ICA.
F= the antigonal conjugate of C wrt IAB.
Euler lines of DBC, ECA and FAB concur in X(104), the antipode of X(100).
Best regards, Seiichi Kirikami.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου