#4209
Dear Geometers,
Let ABC be a triangle, Let two point Ba, Ca lie on BC; two points Ab, Cb lie on AC, two points Ac, Bc lie on AB. Such that six points Ba, Ca, Ab, Cb, Ac, Bc lie on a circle with center (O). Let Oa, Ob, Oc be the centers of three circles (OBaCa), (OCbAb), (OAcBc) respectively.
Let A', B', C' be the points on OOa, OOb, OOc such that OA'=OB'=OC' then AA', BB', CC' are concurrent.
When (O) be the incircle we have de Villiers theorem
When (O) be the circumcircle we have Kosnita theorem
https://www.geogebra.org/m/hfKCbUaP
Best regards
Sincerely
Dao Thanh Oai
Dear Dao Thanh Oai,
I dislike the topic "A generalization Kosnita theorem and de Villiers theorem".
You found a nice configuration(7 cycles) on a Möbius plane.
I give the triangle version here and post the correct 7 cycle version later.
second point of intersection
A' - (OCbAb),(OAcBc)
B' - (OAcBc),(OBaCa)
C' - (OCbAb),(OAcBc)
reflection of O in sideline
O'a - BC
O'b - CA
O'c - AB
Then the three circles (O,A',O'a),(O,B',O'b),(O,C',O'c) concur at another point!
Best regards,
Tsihong Lau
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου