#3956
Dear geometers,
Let ABC be a triangle with incenter I.
A'B'C' is cyclocevian triangle of I wrt ABC.
Then orthocenter of A'B'C' lies on OI line of ABC.
Is this a new point ?
Best regards,
Tran Quang Hung.
--------------------------------------------------------------
#3960
The orthocenter of A'B'C' is the intersection of IO and X(5948)X(5164), the line that passes through the orthocenter of Feuerbach triangle and the inverse in circumcircle of the isogonal conjugate of the cyclocevian conjugate of I.
Barycentric coordinates:
a (a^3 (b+c)-a (b-c)^2 (b+c)-(b^2-c^2)^2+a^2 (b^2+c^2)) (a^5+a^4 (b+c)+(b-c)^2 (b+c)^3-a^3 (2 b^2+b c+2 c^2)-2 a^2 (b^3+b^2 c+b c^2+c^3)+a (b^4+b^3 c+2 b^2 c^2+b c^3+c^4)):... : ...),
with (6 - 9 - 13) - search numbers (-0.532738560673522, -0.145319569198488, 3.98714967320188)
Angel Montesdeoca
Barycentric coordinates:
a (a^3 (b+c)-a (b-c)^2 (b+c)-(b^2-c^2)^2+a^2 (b^2+c^2)) (a^5+a^4 (b+c)+(b-c)^2 (b+c)^3-a^3 (2 b^2+b c+2 c^2)-2 a^2 (b^3+b^2 c+b c^2+c^3)+a (b^4+b^3 c+2 b^2 c^2+b c^3+c^4)):... : ...),
with (6 - 9 - 13) - search numbers (-0.532738560673522, -0.145319569198488, 3.98714967320188)
Angel Montesdeoca
--------------------------------------------------------------
#3962
Dear geometers,
I see the general problem.
Let ABC be a triangle with P,Q are two isogonal conjugate point and circumcenter O.
A'B'C' is cyclocevian triangle of O wrt ABC.
Then orthocenter of A'B'C' lies on line OQ.
Thank you for your interest.
Best regards,
Tran Quang Hung.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου