#4850
Dear geometers,
Let ABC be a triangle.
Contact triangle A'B'C' and Nagel point Na.
Let La,Lb,Lc be the symmedian points triangles NaB'C', NbC'A' and NcA'B'.
Then ABC and LaLbLc are perspective.
Which is the perpsector?
Best regards,
Tran Quang Hung.
----------------------------------------------------------------
#4851
[Tran Quang Hung]:
Let ABC be a triangle.
Contact triangle A'B'C' and Nagel point Na.
Let La,Lb,Lc be the symmedian points triangles NaB'C', NbC'A' and
NcA'B'.
Then ABC and LaLbLc are perspective.
Which is the perpsector?
*** ABC and LaLbLc are perspective at
W = (4 r^2+16 r R-s^2) X(1) - 12 r^2 X(2)
W = (a^3-2 a^2 (b+c)-4 (b-c)^2 (b+c)+a (9 b^2-14 b c+9 c^2) : -4
a^3+b^3-2 b^2 c+9 b c^2-4 c^3+a^2 (9 b+4 c)-2 a (b^2+7 b c-2 c^2) : -4
a^3-4 b^3+9 b^2 c-2 b c^2+c^3+a^2 (4 b+9 c)+2 a (2 b^2-7 b c-c^2))
The (6 - 9 - 13) - search numbers of W are
(3.45104654014144, 1.80769104483599, 0.796395355417256),
which are the same coordinates that the center
X(4691) = (-2 a+5 b+5 c : 5 a-2 b+5 c : 5 a+5 b-2 c).
Angel Montesdeoca
Let ABC be a triangle.
Contact triangle A'B'C' and Nagel point Na.
Let La,Lb,Lc be the symmedian points triangles NaB'C', NbC'A' and
NcA'B'.
Then ABC and LaLbLc are perspective.
Which is the perpsector?
*** ABC and LaLbLc are perspective at
W = (4 r^2+16 r R-s^2) X(1) - 12 r^2 X(2)
W = (a^3-2 a^2 (b+c)-4 (b-c)^2 (b+c)+a (9 b^2-14 b c+9 c^2) : -4
a^3+b^3-2 b^2 c+9 b c^2-4 c^3+a^2 (9 b+4 c)-2 a (b^2+7 b c-2 c^2) : -4
a^3-4 b^3+9 b^2 c-2 b c^2+c^3+a^2 (4 b+9 c)+2 a (2 b^2-7 b c-c^2))
The (6 - 9 - 13) - search numbers of W are
(3.45104654014144, 1.80769104483599, 0.796395355417256),
which are the same coordinates that the center
X(4691) = (-2 a+5 b+5 c : 5 a-2 b+5 c : 5 a+5 b-2 c).
Angel Montesdeoca
----------------------------------------------------------------
#4853
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου