#4214
Dear geometers,
------------------------------------
[César Lozada]:
This concurrence occurs for several triangles in the index of triangles referenced in ETC and the point of concurrence and either Q is a fixed point or Q always lies on a fixed line.
The appearance of (T, K) in the following list means that for triangle T, Q is always X(K):
(anti-Ara, 4), (anti-Ascella, 3), (1st anti-Brocard, 98), (1st anti-circumperp, 3), (anti-McCay, 671), (circumorthic, 3), (hexyl, 1), (Hutson intouch, 1), (incircle-circles, 1), (intouch, 1), (Johnson, 4), (medial, 30), (6th mixtilinear, 1),
The appearance of (T, {I, J}, K) in the following list means that for triangle T Q lies on the line {X(i), X(j)}, whose trilinear pole is X(K):
(ABC-X3 reflections, {2, 3}, 648), (1st circumperp, {3, 8}, 13136), (outer-Garcia, {8, 79}, P1), (1st Morley, {357, 1136}, P2), (2nd Morley, {1134, 1136}, P3), (3rd Morley, {357, 1134}, P4), (orthic, {4, 74}, P5)
where:
P1 = trilinear pole of the line X(8)X(79)
= b^2*c^2*(a-b)*(a-c)*(a^2+c*a-b^2+c^2)* (a^2+b*a+b^2-c^2): : (trilinears)
= on lines: {2, 94}, {476, 9070}, {645, 4585}, {662, 1577}, {3699, 6742}, {8287, 14616}
= isotomic conjugate of X(14838)
= trilinear pole of the line {8, 79}
= [ 0.0771664861892042, -0.0321132886105630, 3.6272814573197530 ]
P2 = trilinear pole of the line X(357)X(1136)
= (2*cos(2*B/3-2*Pi/3)-1)*(2*cos(2*C/3-2*Pi/3)-1)*csc((B-C)/3) : : (trilinears)
= on lines {}
= trilinear pole of the line X(357)X(1136)
= [ -0.2124839000637748, 0.2333219507863389, 3.5772033929309630 ]
P3 = trilinear pole of the line X(1134)X(1136)
= (2*cos(2*B/3)-1)*(2*cos(2*C/3)-1)*csc((B-C)/3) : : (trilinears)
= on lines { }
= trilinear pole of the line X(1134)X(1136)
= [ -0.4129180249109538, 0.4073395077229288, 3.5492377572889450 ]
P4 = trilinear pole of the line X(357)X(1134)
= (2*cos(2*B/3-4*Pi/3)-1)*(2*cos(2*C/3-4*Pi/3)-1)*csc((B-C)/3) : : (trilinears)
= on lines {}
= trilinear pole of the line {357, 1134}
= [ 0.7568322443459275, -0.6082414680076237, 3.7124475392915360 ]
P5 = trilinear pole of the line X(4)X(74)
= SB^2*SC^2*(SA-SB)*(SA-SC) *(S^2-3*SA*SB)*(S^2-3*SA*SC) : : (barycentrics)
= on lines: {107, 523}, {525, 648}, {685, 879}, {1494, 6330}, {1503, 10152}, {1897, 4064}, {1990, 14165}, {2394, 2404}, {3267, 6331}, {3470, 13450}, {6530, 9139}, {14618, 15352}
= isogonal conjugate of X(1636)
= polar conjugate of X(9033)
= trilinear pole of the line {4, 74}
= [ -0.5805934377880054, 0.5098612495022659, 3.5556498189234290 ]
César Lozada
2017-11-29
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου