#3945
Dear geometers,
Let ABC be a triangle.
A'B'C' is cenvian triangle of incenter I.
A''B''C'' is pedal triangle of circumcenter O.
Then radical centers of the circles (A',A'A''), (B',B'B''), (C',C'C'') lies on OI line of ABC.
Which is this point ?
Best regards,
Tran Quang Hung.
--------------------------------------------------------------
#3950
Dear Tran Quang Hung
The radical centers of the circles (A',A'A''), (B',B'B''), (C',C'C'') is:
W = (r^2+2rR+s^2) X(1) - (r^2-14rR+s^2) X(3)
W = (a (a^4 (b^2-6 b c+c^2)
+a^3 (b^3+b^2 c+b c^2+c^3)
-a^2 (b^4-7 b^3 c-7 b c^3+c^4)
-a (b^5+b^4 c+b c^4+c^5)
-b c (b^2-c^2)^2) : ... : ...).
W is the midpoint of X(3) and X(5482).
Let W- be the radical centers of the circles (A',A'B), )C',C'A) and (B',B'C), and W+ the radical centers of the circles (A',A'C), (B',B'A) and (C', C'B).
The points W+,W- form a bicentric pair, the midpoint of W+W- is a center of the triangle X(5482) (on the line IO, see Hechos Geométricos en el Triángulo)
W lies on lines X(i)X(j) for these {i, j}: {1,3}, {511,3530}, {3524,5752},....
(6 - 9 - 13) - search numbers of W: (1.09732354371282, 1.20066532197530, 2.30297762344172).
Best regards,
Angel Montesdeoca
The radical centers of the circles (A',A'A''), (B',B'B''), (C',C'C'') is:
W = (r^2+2rR+s^2) X(1) - (r^2-14rR+s^2) X(3)
W = (a (a^4 (b^2-6 b c+c^2)
+a^3 (b^3+b^2 c+b c^2+c^3)
-a^2 (b^4-7 b^3 c-7 b c^3+c^4)
-a (b^5+b^4 c+b c^4+c^5)
-b c (b^2-c^2)^2) : ... : ...).
W is the midpoint of X(3) and X(5482).
Let W- be the radical centers of the circles (A',A'B), )C',C'A) and (B',B'C), and W+ the radical centers of the circles (A',A'C), (B',B'A) and (C', C'B).
The points W+,W- form a bicentric pair, the midpoint of W+W- is a center of the triangle X(5482) (on the line IO, see Hechos Geométricos en el Triángulo)
W lies on lines X(i)X(j) for these {i, j}: {1,3}, {511,3530}, {3524,5752},....
(6 - 9 - 13) - search numbers of W: (1.09732354371282, 1.20066532197530, 2.30297762344172).
Best regards,
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου