[Tran Quang Hung]:
Dear geometers,
Let ABC be a triangle with nine-points circle (N) and d is a tangent of (N). Let da,db,dc be reflections of d through BC,CA,AB, resp. Lines da,db,dc form a triangle XYZ. I see that circumcircle of triangle XYZ is always touches a fixed circle internally when d moves.
Could you please help me, Is it known circles ?
Best regards,
Tran Quang Hung.
[César Lozada]:
Dear Tran Quang Hung:
It is the circle with diameter (X(3), X(1614)), with center
Z = (3*SA^2-2*(3*SW-5*R^2)*SA+S^2)*a : : (trilinears)
= Midpoint of (3,1614)
= On lines (3,74), (49,1154), (52,1493), (54,143), (184,1658), (546,1495), (567,3518), (3146,3431)
= ( 0.581261729932052, -1.27818900697439, 4.257289919074934 )
Its radius is
Radius = (R/2)*(3+cc)/(1+cc)
Where cc=2*(cos(2*A)+cos(2*B)+cos(2*C))
Best regards
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου