Dear friends,
Consider the following generalizations of the Simson and Steiner lines:
Let P be a point not on the circumcircle of ABC. Let A'B'C' be the pedal triangle of P and A"B"C" the reflection triangle of P. Define the quasi-Simson line of P as the orthic axis of A'B'C', and define the quasi-Steiner line of P as the orthic axis of A"B"C". As P approaches a point Q on the circumcircle, the quasi-Simson/Steiner lines of P approach the Simson/Steiner lines of Q.
Any interesting results using these lines?
Best regards,
Randy Hutson
Τετάρτη 30 Οκτωβρίου 2019
ADGEOM 2040
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου