#4996
----------------------------------------------------------------
#4999
Dear Tran Quang Hung
Very complicated coordinates
-61849*a^18 - 37319*a^16*(b^2 + c^2) + 8*a^14*(203696*b^4 + 447393*b^2*c^2 + 203696*c^4) - 8*a^12*(365409*b^6 + 669475*b^4*c^2 + 669475*b^2*c^4 + 365409*c^6) - 2*a^10*(132509*b^8 + 6082112*b^6*c^2 + 11389446*b^4*c^4 + 6082112*b^2*c^6 + 132509*c^8) + 2*a^8*(1610089*b^10 + 7337661*b^8* c^2 + 7479514*b^6*c^4 + 7479514*b^4*c^6 + 7337661*b^2*c^8 + 1610089*c^10) - 8*a^6*(180261*b^12 - 504013*b^10*c^2 - 3200137*b^8*c^4 - 4501662*b^6*c^6 - 3200137*b^4*c^8 - 504013*b^2*c^10 + 180261*c^12) + (b^2 - c^2)^2* (4589*b^14 + 82127*b^12*c^2 - 214779*b^10*c^4 + 50239*b^8*c^6 + 50239*b^6*c^8 - 214779*b^4*c^10 + 82127*b^2*c^12 + 4589*c^14) - 16*a^4*(16511*b^14 + 222377*b^12*c^2 - 94725*b^10*c^4 - 829475*b^8*c^6 - 829475*b^6*c^8 - 94725*b^4*c^10 + 222377*b^2*c^12 + 16511*c^14) + a^2*(139387*b^16 - 474096*b^14*c^2 - 1265660*b^12*c^4 + 1776560*b^10* c^6 + 565122*b^8*c^8 + 1776560*b^6*c^10 - 1265660*b^4* c^12 - 474096*b^2*c^14 + 139387*c^16) - 4*Sqrt[-a^4 - (b^2 - c^2)^2 + 2*a^2*(b^2 + c^2)]*(10312*a^16 - 4277*b^16 + 20294*b^14*c^2 + 10528*b^12*c^4 - 92326*b^10*c^6 + 123370*b^8*c^8 - 92326*b^6*c^10 + 10528*b^4*c^12 + 20294*b^2*c^14 - 4277*c^16 - 127405*a^14* (b^2 + c^2) + a^12*(74761*b^4 - 16612*b^2*c^2 + 74761*c^4) + a^10*(554099*b^6 + 2123601*b^4*c^2 + 2123601*b^2*c^4 + 554099*c^6) - a^8*(523055*b^8 + 490706*b^6*c^2 - 462786*b^4*c^4 + 490706*b^2*c^6 + 523055*c^8) - a^6*(156559*b^10 + 2242475*b^8*c^2 + 4527238*b^6* c^4 + 4527238*b^4*c^6 + 2242475*b^2*c^8 + 156559*c^10) + a^4*(158227*b^12 + 14928*b^10*c^2 - 2020107*b^8*c^4 - 3217072*b^6* c^6 - 2020107*b^4*c^8 + 14928*b^2*c^10 + 158227*c^12) + a^2*(5705*b^14 + 194087*b^12*c^2 - 141483*b^10*c^4 - 421829*b^8*c^6 - 421829*b^6*c^8 - 141483*b^4*c^10 + 194087*b^2*c^12 + 5705*c^14)) : ... : ...
(6 - 9 - 13) - search numbers (5.38491118901805, 4.50118573443656, -1.96088465224926)
Best regards
Angel Montesdeoca
----------------------------------------------------------------
#5001
Note: There are 4 triads of squares for this configuration. See tri-squares and tri-squares central triangles in the Index of triangles referenced in ETC. The given Euler lines concur only for the 1st (2nd) tri-squares/1st (2nd) tri-squares-central triangles.
· With respect to ABC, the points of concurrence are:
For the 1st tri-squares and 1st tri-squares central triangles:
P1 = EULER LINE INTERCEPT OF X(1285)X(19054)
= (41*a^4-44*(b^2+c^2)*a^2-13*b^4+10*b^2*c^2-13*c^4)*S+18*(c^2+a^2+b^2)*(a^2-b^2-c^2)*a^2 : : (barys)
= 6*S^2+2*SW*S-9*SB*SC : : (barys)
= 4*(SW+3*S)*X(3)+(2*SW-3*S)*X(4)
= As a point on the Euler line, this center has Shinagawa coefficients (E+F+3*S, -9*S/2)
= on lines: {2, 3}, {524, 9541}, {1285, 19054}, {3068, 13662}, {3595, 6451}, {5860, 9741}, {6221, 13639}, {12158, 12256}, {13663, 23249}, {13757, 23273}
= reflection of X(i) in X(j) for these (i,j): (13639, 6221), (23249, 13663)
= [ 5.3849111890180510, 4.5011857344365620, -1.9608846522492640 ]
For the 2nd tri-squares and 2nd tri-squares central triangles:
P2 = EULER LINE INTERCEPT OF X(1285)X(19053)
= -(41*a^4-44*(b^2+c^2)*a^2-13*b^4+10*b^2*c^2-13*c^4)*S+18*(c^2+a^2+b^2)*(a^2-b^2-c^2)*a^2 : : (barys)
= 6*S^2-2*SW*S-9*SB*SC : : (barys)
= 4*(SW-3*S)*X(3)+(2*SW+3*S)*X(4)
= As a point on the Euler line, this center has Shinagawa coefficients (E+F-3*S, 9*S/2)
= on lines: {2, 3}, {597, 9541}, {1285, 19053}, {3069, 13782}, {3593, 6452}, {5861, 9741}, {6398, 13759}, {12159, 12257}, {13637, 23267}, {13783, 23259}
= reflection of X(i) in X(j) for these (i,j): (13759, 6398), (23259, 13783)
= [ -5.5596450227196770, -6.4144984616681650, 10.6474611197021900 ]
· With respect to A’B’C’, the points of concurrence are:
For the 1st tri-squares and 1st tri-squares central triangles:
P’1 = EULER LINE INTERCEPT OF X(99)X(1270)
= -(a^2+b^2+c^2)*S+5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2: : (barys)
= 2*(SW+4*S)*X(3)+(SW-2*S)*X(4) = 4*X(1151)-X(12222) = 2*X(12313)+X(12510)
= As a point on the Euler line, this center has Shinagawa coefficients (E+F+4*S, -6*S)
= on lines: {2, 3}, {99, 1270}, {193, 9541}, {488, 13712}, {490, 5861}, {591, 12221}, {1151, 12222}, {1271, 14907}, {5860, 8716}, {6409, 12323}, {6462, 13678}, {6567, 13639}, {7585, 9675}, {12313, 12510}
= reflection of X(488) in X(13712)
= [ 5.9375873907285220, 5.0524039623720300, -2.5975785954555750 ]
For the 2nd tri-squares and 2nd tri-squares central triangles:
P’2 = EULER LINE INTERCEPT OF X(99)X(1271)
= (a^2+b^2+c^2)*S+5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2: : (barys)
= 2*(SW-4*S)*X(3)+(SW+2*S)*X(4) = 4*X(1152)-X(12221) = 2*X(12314)+X(12509)
= As a point on the Euler line, this center has Shinagawa coefficients (E+F-4*S, 6*S)
= on lines: {2, 3}, {99, 1271}, {487, 13835}, {489, 5860}, {1152, 12221}, {1270, 14907}, {1991, 12222}, {5861, 8716}, {6410, 12322}, {6463, 13798}, {6566, 13759}, {12314, 12509}
= reflection of X(487) in X(13835)
= [ -13.6341382212094600, -14.4676909432220400, 19.9494373908501600 ]
· With respect to A”B”C”, the points of concurrence are:
For the 1st tri-squares and 1st tri-squares central triangles:
P”1 = EULER LINE INTERCEPT OF X(488)X(7582)
= 5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2-4*(a^2+b^2+c^2)*S: : (barys)
= 4*(SW+S)*X(3)+(2*SW-S)*X(4)
= As a point on the Euler line, this center has Shinagawa coefficients E+F+S, -3*S/2)
= on lines: {2, 3}, {141, 9541}, {371, 5861}, {372, 13712}, {488, 7582}, {490, 7581}, {492, 23273}, {591, 1588}, {1271, 6221}, {1285, 3068}, {1384, 8974}, {3593, 13785}, {5490, 14226}, {5590, 6561}, {5591, 6200}, {6202, 12305}, {7586, 14482}, {9738, 10517}, {12323, 13886}, {13789, 13794}, {13950, 15048}, {19054, 19103}, {23263, 23311}
= {X(11292), X(11294)}-harmonic conjugate of X(4)
= [ 3.8087187372085070, 2.9291513181132340, -0.1450796939594791 ]
For the 2nd tri-squares and 2nd tri-squares central triangles:
P”2 = EULER LINE INTERCEPT OF X(487)X(7581)
= 5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2+4*(a^2+b^2+c^2)*S: : (barys)
= 4*(SW-S)*X(3)+(2*SW+S)*X(4)
= As a point on the Euler line, this center has Shinagawa coefficients E+F-S, 3*S/2)
= on lines: {2, 3}, {371, 13835}, {372, 5860}, {487, 7581}, {489, 7582}, {491, 23267}, {1270, 6398}, {1285, 3069}, {1384, 13950}, {1587, 1991}, {3589, 9541}, {3595, 13665}, {5491, 14241}, {5590, 6396}, {5591, 6560}, {6201, 12306}, {7585, 14482}, {8974, 15048}, {9739, 10518}, {12322, 13939}, {13669, 13674}, {19053, 19104}, {23253, 23312}
= {X(11291), X(11293)}-harmonic conjugate of X(4)
= [ 0.9822875999522916, 0.1101763775635536, 3.1110250205393240 ]
César Lozada
----------------------------------------------------------------
#5004
Here is my generalization for this problem, I posted to Anopolis, thank Mr Antreas P. Hatzipolakis to rewrite this problem.
We construct the external similar rectangles based on the sides of the triangle:
BCCaBa, CAAbCb, ABBcAc with centers A', B', C', resp.
CaBa, AbCb, BcAc bound a triangle A"B"C"
AbAc, BcBa, CaCb bound a triangle A0B0C0
The Euler lines of A'B'C', A"B"C", A0B0C0 are concurrent.
Which is the point of concurrence with term of Kierpert angles of rectangles?
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου