[Tran Quang Hung]:
Dear geometers,
Let ABC be a triangle and A'B'C' is cevian triangle of X(31).
A'',B'',C'' are X(31) of the triangle AB'C',BC'A',CA'B'.
Then AA'',BB'',CC'' are concurrent at a point.
Which is this point.
More general.
Let ABC be a triangle. We define point Px(a^x,b^x,c^x) in barycentric coordinate with x is a real number.
Let P be Px point of triangle ABC and A'B'C' is cevian triangle of P.
A'',B'',C'' are the point Px of the triangle AB'C',BC'A',CA'B'.
Then AA'',BB'',CC'' are concurrent at a point.
Which is the locus when x change ?
Best regards,
Tran Quang Hung.
[César Lozada]:
Dear Mr. Hung:
Hope you don´t mind that my answer uses trilinear coordinates:
If P(k) = a^k : b^k : c^k (trilinears), the perspector Q(k) of A” and A is
Q(k): 1/((a^k*(b^(k+1)+c^(k+1)))^k) : : (trilinears)
In the following list, (k, I) means that P(k) = X(I)
(-6, 1928), (-5, 1502), (-4, 561), (-3, 76), (-2, 75), (-1, 2), (0, 1), (1, 6), (2, 31), (3, 32), (4, 560), (5, 1501), (6, 1917), (7, 9233)
In this one, (k, I) means that Q(k)=X(I):
(-2, 1089), (-1, 2), (0, 1), (1, 83)
Q(2) = 1/(a^4*(b^3+c^3)^2) : : (tri.)
= on lines: {}
= [ 3.316794374500031, 0.96335756403065, 1.442896457040066 ]
Q(-3) = (b^2+c^2)^3/a^3 : : (tri.)
= On lines: {305,7855}, {3266,5041}
= [ 6.226367119072926, 1.01719098835822, 0.062747435010413 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου