[Kadir Altintas]
Let O be the circumcenter of ABC and DEF the circuncevian triangle of O.
Let Ha be the orthocenter of AFE (=X(4) of AFE) and Ka the symmedian point of AFE (=X(6) of AFE).
[Ercole Suppa]
X = REFLECTION OF X(4) IN X(53)
= (a^2+b^2-c^2)^2 (a^2-b^2+c^2)^2 (a^4-a^2 b^2-a^2 c^2-2 b^2 c^2) : : (barys)
= (4 R^2 SB+4 R^2 SC+SB SC-SB SW-SC SW)S^2 - 4 R^2 SB SC SW+SB SC SW^2 : :
= 2*X[389]-X[6751]
= lies on these lines: {2,26870}, {3,95}, {4,6}, {5,17907}, {22,324}, {24,157}, {25,98}, {54,19212}, {154,436}, {182,458}, {186,2453}, {232,13860}, {275,11402}, {297,1352}, {317,3564}, {340,11898}, {389,6751}, {403,16324}, {427,9744}, {428,14495}, {467,11442}, {511,9308}, {648,1351}, {917,32704}, {930,23233}, {1093,1598}, {1141,23232}, {1300,30247}, {1593,11257}, {1594,23333}, {1597,11169}, {1896,4186}, {1948,24320}, {1993,19174}, {2871,6403}, {2980,10594} ,{3168,17810}, {3172,12110}, {4230,15928}, {4994,11423}, {5020,15466}, {5094,14165}, {5198,14249}, {5422,30506}, {5890,9792}, {6524,6995}, {6525,7714}, {6528,12188}, {6747,11550}, {6750,18381}, {6755,11245}, {6759,8887}, {6820,14826}, {9753,16318}, {9755,10311}, {10519,32000}, {11331,24206}, {11412,19197}, {13200,15356}, {15087,19177}, {16263,17983}, {17984,18027}, {18916,18953}, {19128,19156}, {19544,31623}
= reflection of X(i) in X(j) for these {i,j}: {4,53}, {6751,389}, {18437,5}, {20477,3}
Let O be the circumcenter of ABC and DEF the circuncevian triangle of O.
Let Ha be the orthocenter of AFE (=X(4) of AFE) and Ka the symmedian point of AFE (=X(6) of AFE).
Define Hb,Kb,Hc,Kc cyclically.
Lines HaKa, HbKb, HcKc concur. (i.e. X(4)X(6) lines of AFE, BFD, CDE concur.)
Lines HaKa, HbKb, HcKc concur. (i.e. X(4)X(6) lines of AFE, BFD, CDE concur.)
Concurrency point has first barycentric coordinate:
X=(a^4-(b^2-c^2)^2)^2(a^4-2b^2c^2-a^2(b^2+c^2)::
--------------------------------------------------------------------------------------------
X=(a^4-(b^2-c^2)^2)^2(a^4-2b^2c^2-a^2(b^2+c^2)::
--------------------------------------------------------------------------------------------
[Ercole Suppa]
X = REFLECTION OF X(4) IN X(53)
= (a^2+b^2-c^2)^2 (a^2-b^2+c^2)^2 (a^4-a^2 b^2-a^2 c^2-2 b^2 c^2) : : (barys)
= (4 R^2 SB+4 R^2 SC+SB SC-SB SW-SC SW)S^2 - 4 R^2 SB SC SW+SB SC SW^2 : :
= 2*X[389]-X[6751]
= lies on these lines: {2,26870}, {3,95}, {4,6}, {5,17907}, {22,324}, {24,157}, {25,98}, {54,19212}, {154,436}, {182,458}, {186,2453}, {232,13860}, {275,11402}, {297,1352}, {317,3564}, {340,11898}, {389,6751}, {403,16324}, {427,9744}, {428,14495}, {467,11442}, {511,9308}, {648,1351}, {917,32704}, {930,23233}, {1093,1598}, {1141,23232}, {1300,30247}, {1593,11257}, {1594,23333}, {1597,11169}, {1896,4186}, {1948,24320}, {1993,19174}, {2871,6403}, {2980,10594} ,{3168,17810}, {3172,12110}, {4230,15928}, {4994,11423}, {5020,15466}, {5094,14165}, {5198,14249}, {5422,30506}, {5890,9792}, {6524,6995}, {6525,7714}, {6528,12188}, {6747,11550}, {6750,18381}, {6755,11245}, {6759,8887}, {6820,14826}, {9753,16318}, {9755,10311}, {10519,32000}, {11331,24206}, {11412,19197}, {13200,15356}, {15087,19177}, {16263,17983}, {17984,18027}, {18916,18953}, {19128,19156}, {19544,31623}
= reflection of X(i) in X(j) for these {i,j}: {4,53}, {6751,389}, {18437,5}, {20477,3}
= barycentric product of X(i) and X(j) for these {i,j}: {4,458}, {107,23878}, {182,2052}, {183,393}, {264,10311}, {1096,3403}, {2207,20023}, {3288,6528}
= barycentric quotient of X(i) and X(j) for these {i,j}: {182,394}, {183,3926}, {393,262}, {458,69}, {1096,2186}, {2052,327}, {2207,263}, {3288,520}, {6784,3269}, {10311,3}, {20031,6037}, {23878,3265}, {32713,26714}
= trilinear product of X(i) and X(j) for these {i,j}: {19,458}, {19,458}, {92,10311}, {158,182}, {158,182}, {183,1096}, {183,1096}, {823,3288}, {823,3288}, {2207,3403}, {2207,3403}, {6784,23999}, {6784,23999}, {23878,24019}
= trilinear quotient of X(i) and X(j) for these {i,j}: {158,262}, {183,326}, {393,2186}, {2207,3402}, {3403,3926}, {24019,26714}
= {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {4,393,6530}, {4,1249,14853}, {4,14912,3087}, {1629,2052,25}, {3087,15258,14912}, {6530,16264,4}, {8795,8884,19189}, {20477,20792,3}
Best regards,
Ercole Suppa
= barycentric quotient of X(i) and X(j) for these {i,j}: {182,394}, {183,3926}, {393,262}, {458,69}, {1096,2186}, {2052,327}, {2207,263}, {3288,520}, {6784,3269}, {10311,3}, {20031,6037}, {23878,3265}, {32713,26714}
= trilinear product of X(i) and X(j) for these {i,j}: {19,458}, {19,458}, {92,10311}, {158,182}, {158,182}, {183,1096}, {183,1096}, {823,3288}, {823,3288}, {2207,3403}, {2207,3403}, {6784,23999}, {6784,23999}, {23878,24019}
= trilinear quotient of X(i) and X(j) for these {i,j}: {158,262}, {183,326}, {393,2186}, {2207,3402}, {3403,3926}, {24019,26714}
= {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {4,393,6530}, {4,1249,14853}, {4,14912,3087}, {1629,2052,25}, {3087,15258,14912}, {6530,16264,4}, {8795,8884,19189}, {20477,20792,3}
Best regards,
Ercole Suppa
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου