Dear Friends:
Let (a’) be the parallel line to (BC) through A and Ab,Ac the orthogonal projections of B,C on (a’). Build Bc,Cb, Ca, Cb cyclically.
Let P be a point and A’B’C’ the cevian triangle of ABC.
The circle {A’,Bc,Cb} cuts (BC) again at A”. Build B”, C” cyclically.
Then lines (AA”), (BB”), (CC”) concur at Z(P)=X(1973)-Isoconjugate(P), i.e., for P:u:w:w (trilinears), they concur at:
Z(P) = (b^2+c^2-a^2)/(a^2*u) : :
= SA/((SB+SC)*u) : :
= cos(A)/(a^3*u) : :
= X(1973)-Isoconjugate(P)
Some ETC-pairs (P,Z(P)) or (Z(P),P):
(1,304), (2,69), (3,76), (4,3926), (6,305), (7,345), (8,348), (21,1231), (48,561),
(57,3718), (63,75), (71,310), (72,274), (77,312), (78,85), (83,3933), (86,306),
(92,326), (95,343), (97,311), (99,525)
Some non ETC Z(P):
Z(5)= SA/(a*(S^2+SB*SC)) : :
= Isogonal conjugate of X(3199)
= Isotomic conjugate of X(53)
= ( 25.329144891733560, -11.33698411909894, -0.201028770285693 )
Z(9) = (b^2+c^2-a^2)/(a^2*(b+c-a)) : :
= Isogonal conjugate of X(2212)
= Isotomic conjugate of X(33)
= ( 10.942446616969050, 4.50878797259950, -4.531164091570218 )
Z(10) = SA/(a*(b+c)) : :
= Isogonal conjugate of X(2333)
= Isotomic conjugate of X(1826)
= ( 6.000643699474401, 2.68400656044699, -0.987021767390182 )
Regards
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου