[Tran Quang Hung]:
Dear geometers,
Let ABC be a triangle with Feruerbach point Fa,Fb,Fc and excircles (Ia),(Ib),(Ic).(Kb) is the circle passing through Fc,Fa and touches (Ib) at E but (Kb) is not NPC.
(Kc) is the circle passing through Fa,Fb and touches (Ic) at F but (Kb) is not NPC.
Tran Quang Hung
[Peter Moses]:
Hi Hung,
The perspector's first barycentric is:
(b+c)^2 (-a^14 b-3 a^13 b^2-2 a^12 b^3+2 a^11 b^4+5 a^10 b^5+7 a^9 b^6+4 a^8 b^7-4 a^7 b^8-7 a^6 b^9-5 a^5 b^10-2 a^4 b^11+2 a^3 b^12+3 a^2 b^13+a b^14-a^14 c-2 a^13 b c-8 a^12 b^2 c-16 a^11 b^3 c-8 a^10 b^4 c+4 a^9 b^5 c+9 a^8 b^6 c+16 a^7 b^7 c+11 a^6 b^8 c-2 a^5 b^9 c-2 a^4 b^10 c-2 a^2 b^12 c+b^14 c-3 a^13 c^2-8 a^12 b c^2-8 a^11 b^2 c^2-14 a^10 b^3 c^2-8 a^9 b^4 c^2+25 a^8 b^5 c^2+20 a^7 b^6 c^2-8 a^6 b^7 c^2+a^5 b^8 c^2+6 a^4 b^9 c^2-4 a^3 b^10 c^2-2 a^2 b^11 c^2+2 a b^12 c^2+b^13 c^2-2 a^12 c^3-16 a^11 b c^3-14 a^10 b^2 c^3+2 a^9 b^3 c^3-2 a^8 b^4 c^3+4 a^7 b^5 c^3+36 a^6 b^6 c^3+16 a^5 b^7 c^3-18 a^4 b^8 c^3-4 a^3 b^9 c^3+2 a^2 b^10 c^3-2 a b^11 c^3-2 b^12 c^3+2 a^11 c^4-8 a^10 b c^4-8 a^9 b^2 c^4-2 a^8 b^3 c^4+28 a^7 b^4 c^4-16 a^5 b^6 c^4+20 a^4 b^7 c^4+2 a^3 b^8 c^4-8 a^2 b^9 c^4-8 a b^10 c^4-2 b^11 c^4+5 a^10 c^5+4 a^9 b c^5+25 a^8 b^2 c^5+4 a^7 b^3 c^5+28 a^5 b^5 c^5-4 a^4 b^6 c^5-12 a^3 b^7 c^5-a^2 b^8 c^5-b^10 c^5+7 a^9 c^6+9 a^8 b c^6+20 a^7 b^2 c^6+36 a^6 b^3 c^6-16 a^5 b^4 c^6-4 a^4 b^5 c^6+32 a^3 b^6 c^6+8 a^2 b^7 c^6+5 a b^8 c^6-b^9 c^6+4 a^8 c^7+16 a^7 b c^7-8 a^6 b^2 c^7+16 a^5 b^3 c^7+20 a^4 b^4 c^7-12 a^3 b^5 c^7+8 a^2 b^6 c^7+4 a b^7 c^7+4 b^8 c^7-4 a^7 c^8+11 a^6 b c^8+a^5 b^2 c^8-18 a^4 b^3 c^8+2 a^3 b^4 c^8-a^2 b^5 c^8+5 a b^6 c^8+4 b^7 c^8-7 a^6 c^9-2 a^5 b c^9+6 a^4 b^2 c^9-4 a^3 b^3 c^9-8 a^2 b^4 c^9-b^6 c^9-5 a^5 c^10-2 a^4 b c^10-4 a^3 b^2 c^10+2 a^2 b^3 c^10-8 a b^4 c^10-b^5 c^10-2 a^4 c^11-2 a^2 b^2 c^11-2 a b^3 c^11-2 b^4 c^11+2 a^3 c^12-2 a^2 b c^12+2 a b^2 c^12-2 b^3 c^12+3 a^2 c^13+b^2 c^13+a c^14+b c^14)::
Not in ETC.
Searches {-2.45280231323039235286358699070,-4.21158485458085001844526817380,7.68843967964668712490212014160}.
The point D = {-(a+b-c) (a-b+c) (b+c)^2 (a b+b^2+a c+c^2)^2,(a+c)^2 (a-b+c) (a+b+c) (-a b-b^2+a c-c^2)^2,(a+b)^2 (a+b-c) (a+b+c) (a b-b^2-a c-c^2)^2}.
Best regards,
Peter Moses.
[Tran Quang Hung]:
Dear Mr Peter,
Thank you so much for help me to find this point.
I can't draw the circle touch (Ka),(Kb),(Kc). I conjecture that the if (K) is the circle which touches (Ka),(Kb),(Kc) and (L) is the circle touches (Ia),(Ib),(Ic) internally then (K) and (L) are tangent. Please help me to check this.
Thank you very much and best regards,Thank you so much for help me to find this point.
I can't draw the circle touch (Ka),(Kb),(Kc). I conjecture that the if (K) is the circle which touches (Ka),(Kb),(Kc) and (L) is the circle touches (Ia),(Ib),(Ic) internally then (K) and (L) are tangent. Please help me to check this.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου