[APH]
Pedal triangle version (2nd):
Let ABC be a triangle and A'B'C' the pedal triangle of I.
Denote:
Ha, Hb, Hc = the orthocenters of AB'C', BC'A', CA'B', resp.
The Euler lines of AHbHc, BHcHa, CHaHb and A'B'C' [= OI line of ABC]
are concurrent.
[Seiichi Kirikami]:
1st barycentric coordinate of 2nd case =
a (a^5 (b + c) - (b - c)^4 (b + c)^2 - a^4 (b^2 + c^2) - 2 a^3 (b^3 + c^3) + 2 a^2 (b^4 - b^3 c - 2 b^2 c^2 - b c^3 + c^4) +a (b^5 - b^4 c - b c^4 + c^5)).
Search number of triangle {6,9,13} = 1.508612666646547..
Best regards, Seiichi.
P. S. 1st case is difficult to solve because its expressions can not exclude triangular functions.
[Peter Moses]:on lines {{2,3},{113,1209},{127,3934},{131,137},{184,9927},{185,5449},{216,1879},{265,6146},{1060,7741},{1062,7951},{1216,1568},{3574,5446},{3580,6102},{5448,5562},{5476,8538},{5893,7728}}Best regards,Peter Moses
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου