#3877
Dear geometers,
Let ABC be a triangle with incenter I.
Ha is orthocenter of triangle IBC.
Euler line of triangle HaBC cuts the lines HaC,HaB at Ac,Ab.
Then Euler line da of triangle HaAbAc is parallel to line BC.
Similar, we have the lines db,dc.
Then the lines da,db,dc bound a triangle A'B'C' which is homothetic to ABC.
Triangle A'B'C' and ABC share the same OI line and the homothety center lies on this OI line. Which is this point ?
Best regards,
Tran Quang Hung.
------------------------------------------------------
#3880
Dear Tran Quang Hung,
The homothety center of triangles A'B'C' and ABC is
((a (2 a-b-c) (a^2-a (b+c)-(b-c)^2+b c))/(b+c-a) : ... : ...),
with (6 - 9 - 13) - search numbers (-0.106049542593117, 0.207008707141764, 3.54629670431383).
Lies on lines X(i)X(j) for these {i, j}: {1,3}, {659, 6164}, {3911,4759}.
Best regards,
Angel Montesdeoca
The homothety center of triangles A'B'C' and ABC is
((a (2 a-b-c) (a^2-a (b+c)-(b-c)^2+b c))/(b+c-a) : ... : ...),
with (6 - 9 - 13) - search numbers (-0.106049542593117, 0.207008707141764, 3.54629670431383).
Lies on lines X(i)X(j) for these {i, j}: {1,3}, {659, 6164}, {3911,4759}.
Best regards,
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου