Dear friends,
I post the following, because ETC does not contain the point P.
Let ABC be a triangle and I its incenter.
Denote:
Ra, Rb, Rc = the reflection points of I in BC, CA, AB respectively.
D, E, F = the reflection points of I in Ra, Rb, Rc respectively.
Euler A, Euler B, Euler C = the Euler lines of DBC, ECA, FAB respectively.
These Euler lines concur in a point P.
1 st barycentric of P =
-7a^4+6a^3(b+c)+a^2(5b^2-13bc+5c^2)+a(-6b^3+5b^2c+5bc^2-6c^3)+2(b^2-c^2)^2.
Search number of triangle {6, 9, 13} = 0.723715568912377..
Addition:
The lines parallel to Euler A, Euler B, Euler C through A, B, C respectively concur in X(80).
Best regards, Seiichi Kirikami
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου