#3920
Dear geometers,
Dear geometers,
>>triangles ABC and A''B''C'' are similar and orthologic
Both affirmations only if ABC is acute
For ABC acute:
Orthologic centers:
Q(A->A”) = X(1141)
Q(A”->A) = complement of X(13630)
= a^2*((b^2+c^2)*a^2-(b^2-c^2)^2)*(a^4-2*(b^2+c^2)*a^2+5*b^2*c^2+c^4+b^4) : : (barycentrics)
= 3*X(2)+X(5876) = 9*X(3)-X(12279) = 7*X(3)+X(12290) = 5*X(4)+3*X(13340) = 7*X(5)-3*X(51) = 5*X(5)-X(52) = 3*X(5)-X(143) = 3*X(5)+X(5562) = 15*X(51)-7*X(52) = 9*X(51)-7*X(143) = 9*X(51)+7*X(5562) = 5*X(10627)-3*X(13340) = 7*X(12279)+9*X(12290)
= On lines: {2, 5876}, {3, 6030}, {4, 10627}, {5, 51}, {30, 5447}, {110, 10610}, {140, 5663}, {156, 7514}, {185, 632}, {381, 6101}, {382, 7999}, {389, 547}, {511, 3850}, {546, 1216}, {548, 3819}, {549, 12162}, {568, 5056}, {631, 13491}, {1493, 13434}, {1656, 6102}, {1657, 7998}, {2063, 9818}, {2979, 3843}, {3060, 5072}, {3090, 5946}, {3091, 10263}, {3526, 12111}, {3530, 6000}, {3534, 11439}, {3545, 6243}, {3567, 5079}, {3627, 3917}, {3628, 10219}, {3845, 10625}, {3851, 11412}, {4550, 11250}, {5054, 6241}, {5055, 5889}, {5066, 5446}, {5070, 5890}, {5609, 7550}, {5650, 10575}, {5943, 12046}, {7564, 10516}, {7723, 11561}, {8703, 11381}, {10024, 12358}, {10110, 12811}, {12103, 13474}, {12134, 13470}
= midpoint of X(i) and X(j) for these {i,j}: {4, 10627}, {5, 11591}, {140, 5907}, {143, 5562}, {546, 1216}, {5876, 13630}, {7723, 11561}, {11412, 13421}, {11459, 13363}, {12103, 13474}, {12134, 13470}
= reflection of X(i) in X(j) for these (i,j): (546, 11017), (548, 11592), (10095, 5), (10110, 12811), (12006, 3628)
= complement of X(13630)
= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (2, 5876, 13630), (5, 52, 13364), (5, 5562, 143), (5, 5891, 11591), (143, 11591, 5562), (381, 11444, 6101), (548, 3819, 11592), (1656, 6102, 13363), (1656, 11459, 6102), (5907, 10170, 140), (5943, 12812, 12046)
= [ 0.877056360830461, -0.43956653222597, 3.540184529988299 ] (calculated for 6-9-13 triangle, although A”B”C” and ABC are not orthologic for it)
Center of inverse similitude (ABC, A”B”C”)
Si = 4*(2*cos(2*A)-7)*cos(B-C)-2*(3*cos(A)-cos(3*A))*cos(2*(B-C))-7*cos(3*A)+cos(5*A)-5*cos(A) :: (trilinears)
= [ 0.698634769708212, -0.61918455028304, 3.746883892238080 ]
César Lozada
The orthology center of A''B''C'' wrt ABC is 7 X(5) - 3 X(51),
with (6 - 9 - 13) - search numbers (0.877056360830461, -0.439566532225970, 3.54018452998830).
The center of similar transformation which transform A''B''C'' to ABC is
W = ( a^2 (a^14-5 a^12 (b^2+c^2)+a^10 (11 b^4+8 b^2 c^2+11 c^4)+a^8 (-15 b^6+b^4 c^2+b^2 c^4-15 c^6)-(b^2-c^2)^4 (b^6-3 b^4 c^2-3 b^2 c^4+c^6)+a^2 (b^2-c^2)^2 (5 b^8-6 b^6 c^2-34 b^4 c^4-6 b^2 c^6+5 c^8)+a^6 (15 b^8-8 b^6 c^2-13 b^4 c^4-8 b^2 c^6+15 c^8)+a^4 (-11 b^10+13 b^8 c^2+33 b^6 c^4+33 b^4 c^6+13 b^2 c^8-11 c^10)) : ... : ...).
with (6 - 9 - 13) - search numbers (0.698634769708212, -0.619184550283042, 3.74688389223808).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου