Antreas P. Hatzipolakis
[APH]:
APHPoint?(ie it is the intersection of the Euler lines of ABC and M1M2M3).The circumcenter of M1M2M3 lies on the Euler line of ABCLet M1,M2,M3 be the midpoints of ANa, BNb, CNc, resp.of IBC, ICA, IAB, resp.I do not remember if I have sent this before....Let ABC be a triangle and Na,Nb,Nc the NPC centers
[Angel Montesdeoca]:
Dear Antreas,
The circumcenter of M1M2M3 is
(2 a^7-2 a^6 (b+c)+(b-c)^4 (b+c)^3+a^5 (-5 b^2+2 b c-5 c^2)-a (b^2-c^2)^2 (b^2+3 b c+c^2)-2 a^2 (b-c)^2 (2 b^3+3 b^2 c+3 b c^2+2 c^3)+a^4 (5 b^3+b^2 c+b c^2+5 c^3)+a^3 (4 b^4+b^3 c+4 b^2 c^2+b c^3+4 c^4) : ... : ... )
search numbers in ETC
(1.86501930097493, 0.990579410070208, 2.09410059756273)
Best regards
Angel M.
The circumcenter of M1M2M3 is
(2 a^7-2 a^6 (b+c)+(b-c)^4 (b+c)^3+a^5 (-5 b^2+2 b c-5 c^2)-a (b^2-c^2)^2 (b^2+3 b c+c^2)-2 a^2 (b-c)^2 (2 b^3+3 b^2 c+3 b c^2+2 c^3)+a^4 (5 b^3+b^2 c+b c^2+5 c^3)+a^3 (4 b^4+b^3 c+4 b^2 c^2+b c^3+4 c^4) : ... : ... )
search numbers in ETC
(1.86501930097493, 0.990579410070208, 2.09410059756273)
Best regards
Angel M.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου