-
[APH]:M1, M2, M3 = the midpoints of O12O13, O23O21, O31O32, resp.O31, O32 = the orthogonal projections of O3 on CB, CA, resp.O23, O21 = the orthogonal projections of O2 on BA, BC, resp.O12, O13 = the orthogonal projections of O1 on AC, AB, resp.O1,O2, O3 = the circumcenters of OBC,PCA,OAB, respLet ABC be a triangle.Denote:The circumcenter of M1M2M3 lies on the Euler line of ABC(ie it is the intersection of the Euler lines of ABC and M1M2M3).Point?APH[Angel Montesdeoca]:
Dear Antreas,
The circumcenter of M1M2M3 lies on the Euler line of ABC
(-2 a^10+5 a^8 (b^2+c^2)-2 a^6 (b^2+c^2)^2+a^4 (-4 b^6+2 b^4 c^2+2 b^2 c^4-4 c^6)+2 a^2 (b^2-c^2)^2 (2 b^4+b^2 c^2+2 c^4)-(b^2-c^2)^4 (b^2+c^2): ... : ... )
Search number in ETC:
{1.44283258574707, 0.569506434057196, 2.58046806490767}
Best regards,
Angel M.
Τρίτη 22 Οκτωβρίου 2019
HYACINTHOS 23429
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου