[Antreas P. Hatzipolakis]simple points of the quadrilaterals Q1,Q2,Q3 and are concurrent theirThe simlest points P are the Miquel point and the center of the Miquel circle.(or more generally, bound a triangle perspective with ABC)?For which P's, llisted in EQF (*), the triangles ABC, PaPbPc are perspective?Let L be a quadrilateral line and La, Lb, Lc the same quadrilateralpoints of the quadrilaterals Q1,Q2, Q3, resp..Let P be a quadrilateral point and Pa, Pb, Pc the same quadrilateralTwo general questions:Q3 = : (ab, ac, bc, ba) respective to CQ2 = : (ca, cb, ab, ac) respective to BQ1 = : (bc, ba, ca, cb) respective to AThe six perpendiculars form three quadrilaterals respective to A, B, C.ca, cb = the perpendicular lines to trisectors CCa, CCb at C, resp.bc, ba = the perpendicular lines to trisectors BBc, BBa at B, resp.ab, ac = the perpendicular lines to trisectors AAb, AAc at A, respAAb,AAc = the trisectors of A with the traces Ab, Ac near to B, C, resp.Denote:Let ABC be a triangle:In details:I was wondering what we get if we draw perpendiculars to trisectorsof a triangle like the perpendiculars to cevians in the antipedal triangle
configuration.
BBc,BBa = the trisectors of B with the traces Bc, Ba near to C, A, resp.
CCa,CCb = the trisectors of C with the traces Ca, Cb near to A, B, resp.
namely:
lines of the quadrilaterals Q1,Q2,Q3,resp.
For which L's, llisted in EQF (*), the lines La,Lb,Lc are concurrentand the simplest line is the Newton line.Is the triangle ABC perspective with the triangles with vertices these
Newton lines ?
(*)
http://chrisvantienhoven.nl/index.php/mathematics/encyclopedia[Chris van Tienhoven]:
Dear Antreas,
And here is the case with perpendiculars drawn through the vertices at the trisectors.
Let ABC be the reference triangle.
Let ab2 be the perpendicular at the trisector through A nearest to B.
Define ac2, bc2, ba2, ca2, cb2 accordingly.
Let Q1a be the Miquel Point (QL-P1) of the Quadrilateral formed by bc2, ba2, ca2, cb2.
Let Q1b be the Miquel Point (QL-P1) of the Quadrilateral formed by ca2, cb2, ab2, ac2.
Let Q1c be the Miquel Point (QL-P1) of the Quadrilateral formed by ab2, ac2, bc2, ba2.
Now Q1a, Q1b, Q1c lie on the circumcircle of ABC.
And Q1a.Q1b.Q1c is perspective with ABC with perspector N1.
The trilinear coordinates of N1 are:
Cos[A/3] Cos[(2 A)/3] : :
Of course there are 3 sets of trisectors.
So there is also a 2nd and 3rd point, resp. N2 and N3 with trilinear coordinates:
Cos[(A + 2 Pi)/3] Cos[2(A + 2 Pi)/3] : :
Cos[(A + 4 Pi)/3] Cos[2(A + 4 Pi)/3] : :
The search values of N1, N2, N3 are resp.
M1: 2.89615190425
M2: -0.91057320180
M3: 7.122469166
N1 lies on these lines:
X(3).X(358),
X(357).X(3278),
X(1136).X(3334)
X(3281),X(3602)
X(3335),X(3604)
N2 lies on these lines:
X(3).X(1135),
X(357), X(3334)
X(1134), X(3282)
X(3279),X(3604)
X(3335),X(3603)
N3 lies on these lines:
X(3).X(1137),
X(1136), X(3280)
X (1134), X (3334)
X(3283),X(3603)
X(3335),X(3602)
Best regards,
Chris van Tienhoven
p.s.
I recalculated the lines of my former message with more ETC centers
M1 lies on these lines:
X(3).X(358),
X(357).X(3279),
X(1136),X(3335)
X(3334),X(3604)
M2 lies on these lines:
X(3).X(1135),
X(357).X(3335),
X(1134), X(3283)
X(3278),X(3604)
X(3334),X(3603)
M3 lies on these lines:
X(3).X(1137),
X(1134), X(3335)
X(1136), X(3281)
X(3282),X(3603)
X(3334),X(3602)
Δευτέρα 21 Οκτωβρίου 2019
HYACINTHOS 22720
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου