It lies on the O'I line, where O' is the circumcenter of the incentral triangleAntigonal Conjugate of I wrt cevian triangle of I (incentral triangle).(Randy Hutson, Hyacinthos #21651, 22709)
Barycentrics: (a^2 (a^5 + a^4(b+c) - 2a^3(b^2+c^2) - a^2(2b^3-b*c(b+c)+2c^3)+ a(b^4+b^2c^2+c^4) + (b-c)^2(b^3+c^3))(Angel Montesdeoca, Hyacinthos #22708)
3R X(1) + 2r X(399)
search number 0.812149174855219822306671631
X(1)-Ceva conjugate of X(36)
QA-P41 ('Involutary Conjugate of QA-P4') of quadrangle ABCX(1)
The point P for which P of the 'orthocentroidal triangle' = X(1).
It lies on lines {1,399} {6,1718} {35,73} {36,1464} (at least).
(Shapi Topor, In "Short Math. Idea", Hyacinthos #22707)APH
Δευτέρα 21 Οκτωβρίου 2019
HYACINTHOS 22710
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου