[Antreas P. Hatzipolakis]simple points of the quadrilaterals Q1,Q2,Q3 and are concurrent theirThe simlest points P are the Miquel point and the center of the Miquel circle.(or more generally, bound a triangle perspective with ABC)?For which P's, llisted in EQF (*), the triangles ABC, PaPbPc are perspective?Let L be a quadrilateral line and La, Lb, Lc the same quadrilateralpoints of the quadrilaterals Q1,Q2, Q3, resp..Let P be a quadrilateral point and Pa, Pb, Pc the same quadrilateralTwo general questions:Q3 = : (ab, ac, bc, ba) respective to CQ2 = : (ca, cb, ab, ac) respective to BQ1 = : (bc, ba, ca, cb) respective to AThe six perpendiculars form three quadrilaterals respective to A, B, C.ca, cb = the perpendicular lines to trisectors CCa, CCb at C, resp.bc, ba = the perpendicular lines to trisectors BBc, BBa at B, resp.ab, ac = the perpendicular lines to trisectors AAb, AAc at A, respAAb,AAc = the trisectors of A with the traces Ab, Ac near to B, C, resp.Denote:Let ABC be a triangle:In details:I was wondering what we get if we draw perpendiculars to trisectorsof a triangle like the perpendiculars to cevians in the antipedal triangle
configuration.
BBc,BBa = the trisectors of B with the traces Bc, Ba near to C, A, resp.
CCa,CCb = the trisectors of C with the traces Ca, Cb near to A, B, resp.
namely:
lines of the quadrilaterals Q1,Q2,Q3,resp.
For which L's, llisted in EQF (*), the lines La,Lb,Lc are concurrentand the simplest line is the Newton line.Is the triangle ABC perspective with the triangles with vertices these
Newton lines ?
(*)
http://chrisvantienhoven.nl/index.php/mathematics/encyclopedia[Chris van Tienhoven]:
Dear Antreas,
You really know where the treasures are hidden!
I simplify and amend your way of research this way:
Let ABC be the reference triangle.
Denote ab = the trisector through A nearest to B.
Define ac, bc, ba, ca, cb accordingly.
Let P1a be the Miquel Point (QL-P1) of the Quadrilateral formed by bc, ba, ca, cb.
Let P1b be the Miquel Point (QL-P1) of the Quadrilateral formed by ca, cb, ab, ac.
Let P1c be the Miquel Point (QL-P1) of the Quadrilateral formed by ab, ac, bc, ba.
Now P1a, P1b, P1c lie on the circumcircle of ABC.
And P1a.P1b.P1c is perspective with ABC with perspector M1.
The trilinear coordinates of M1 are:
Sin[A/3] Sin[(2 A)/3] : :
Of course there are 3 sets of trisectors.
So there is also a 2nd and 3rd point, resp. M2 and M3 with trilinear coordinates:
Sin[(A + 2 Pi)/3] Sin[2(A + 2 Pi)/3] : :
Sin[(A + 4 Pi)/3] Sin[2(A + 4 Pi)/3] : :
The search values of M1, M2, M3 are resp.
M1: 0.19546078898
M2: 2.55522134223
M3: 6.6496360194
M1 lies on these lines:
X(3).X(358),
X(357).X(3279),
X(1136).X(3335).
M2 lies on these lines:
X(3).X(1135),
X(1134), X(3283)
X(357), X(3335)
M3 lies on these lines:
X(3).X(1137),
X(1136), X(3281)
X (1134), X (3335)
Best regards,
Chris van Tienhoven
p.s.
- I didn’t use your method of using perpendiculars to the trisectors because the method without perpendiculars even seemed better.
- The method of using perpendiculars is not quite new. See remarks in ETC at X(5628).
Δευτέρα 21 Οκτωβρίου 2019
HYACINTHOS 22719
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου