Antreas P. Hatzipolakissimple points of the quadrilaterals Q1,Q2,Q3 and are concurrent theirThe simlest points P are the Miquel point and the center of the Miquel circle.(or more generally, bound a triangle perspective with ABC)?For which P's, llisted in EQF (*), the triangles ABC, PaPbPc are perspective?Let L be a quadrilateral line and La, Lb, Lc the same quadrilateralpoints of the quadrilaterals Q1,Q2, Q3, resp..Let P be a quadrilateral point and Pa, Pb, Pc the same quadrilateralTwo general questions:Q3 = : (ab, ac, bc, ba) respective to CQ2 = : (ca, cb, ab, ac) respective to BQ1 = : (bc, ba, ca, cb) respective to AThe six perpendiculars form three quadrilaterals respective to A, B, C.ca, cb = the perpendicular lines to trisectors CCa, CCb at C, resp.bc, ba = the perpendicular lines to trisectors BBc, BBa at B, resp.ab, ac = the perpendicular lines to trisectors AAb, AAc at A, respAAb,AAc = the trisectors of A with the traces Ab, Ac near to B, C, resp.Denote:Let ABC be a triangle:In details:I was wondering what we get if we draw perpendiculars to trisectorsof a triangle like the perpendiculars to cevians in the antipedal triangle
configuration.
BBc,BBa = the trisectors of B with the traces Bc, Ba near to C, A, resp.
CCa,CCb = the trisectors of C with the traces Ca, Cb near to A, B, resp.
namely:
lines of the quadrilaterals Q1,Q2,Q3,resp.
For which L's, llisted in EQF (*), the lines La,Lb,Lc are concurrentand the simplest line is the Newton line.Is the triangle ABC perspective with the triangles with vertices these
Newton lines ?
(*)
http://chrisvantienhoven.nl/index.php/mathematics/encyclopediaAPH
Δευτέρα 21 Οκτωβρίου 2019
HYACINTHOS 22717
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου