Δευτέρα 21 Οκτωβρίου 2019

ANOPOLIS 1534

Antres P. Hatzipolakis

Let ABC be a triangle and A'B'C' the cevian triangle of O.

Denote:

Lb, Lc = the reflections of the AA' line in AB,AC, resp.

Ab, Ac = the orthogonal projections of A' on Lb,Lc, resp.

Similarly Bc,Ba and Ca,Cb.

Denote:

M11,M21,M31 = the midpoints of AbAc, BcBa, CaCb, resp.

M12,M22,M32 = the midpoints of BaCa, CbAb, AcBc, resp.

M13,M23,M33 = the midpoints of BcCb, CaAc, AbBa, resp.

Are the Euler Lines of the triangles M11M12M13, M21M22M23, M31M32M33
concurrent?

APH

 
 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου