[APH]
The triangles ABC, A'B'C' are perspective
[CL]
Another way to build this perspector:
Let Q be this perspector.
Let A”B”C” be the cevian triangle of O. Tangentes to the incircle through A”, B”, C” (not the sidelines) touch the incircle at A*, B*, C*, resp.
Triangles ABC and A*B*C* are perspective at Q*=Isogonal conjugate of Q.
Note: ABC and A*B*C* are perspective for all points P, not only for P=O. If P=u : v : w (trilinears) then the perspector is
Q* = a*(b+c-a)*u^2 : b*(a+c-b)*v^2 : c*(a+b-c)*w^2
Regards
César Lozada
De: En nombre de Antreas Hatzipolakis
Enviado el: Martes, 06 de Mayo de 2014 05:54 p.m.
Para: anopolis@yahoogroups.com; Hyacinthos
Asunto: [EGML] Perspective?
Let ABC be a triangle with excenters Ia,Ib,Ic.
The NPC of AHIa interscts the excircle (Ia) at A' other than the
Feuerbach point Fa.
The NPC of BHIb intersects the excircle (Ib) at B' other than the
Feuerbach point Fb,
The NPC of CHIc intersects the excircle (Ic) at C' other than the
Feuerbach point Fc.
Are the triangles ABC, A'B'C' perspective?
In any case, has the triangle A'B'C' any interesting properties?
APH
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου