> Are the Euler Lines of the triangles M11M12M13, M21M22M23, M31M32M33
concurrent?
Yes. At:
Z= (4*cos(A)^4+(4*cos(B-C)^2-1)*cos(A)^2+cos(B-C)*(4*cos(A)+cos(B-C)))*cos(B-C)*sin(A)^2 : : (tri.)
= (5,51) /\ (154,157)
= ( -6.313015585454211, 2.25428471766879, 4.993705332192548 )
César Lozada
Antreas P. Hatzipolakis
Let ABC be a triangle and A'B'C' the cevian triangle of O.
Denote:
Lb, Lc = the reflections of the AA' line in AB,AC, resp.
Ab, Ac = the orthogonal projections of A' on Lb,Lc, resp.
Similarly Bc,Ba and Ca,Cb.
Denote:
M11,M21,M31 = the midpoints of AbAc, BcBa, CaCb, resp.
M12,M22,M32 = the midpoints of BaCa, CbAb, AcBc, resp.
M13,M23,M33 = the midpoints of BcCb, CaAc, AbBa, resp.
Are the Euler Lines of the triangles M11M12M13, M21M22M23, M31M32M33
concurrent?
APH
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου