[Antreas P. Hatzipolakis]:
Let ABC be a triangle and P a point.
Denote:
Na, Nb, Nc = the NPC centers of PBC, PCA, PAB, resp.
A', B', C' = the reflections of Na, Nb, Nc in BC, CA, AB, resp.
A", B", C" = the reflections of Na, Nb, Nc in AP, BP, CP, resp.
Which is the locius of P such that A'A", B'B", C'C" are concurrent?
I lies on the locus
[César Lozada]:
Locus = {Linf} ∪ {excentral-circum-degree-16 through ETC’s X(1)}
For P=X(1), the point of concurrence is
Q( X(1) ) = X(500)X(1064) ∩ X(517)X(13630)
= a*( (b-c)^2*a^7+2*(b+c)*b*c*a^6-(3*b^2+4*b*c+3*c^2)*(b-c)^2*a^5-4*(b+c)*(b^2+c^2)*b*c*a^4+(3*b^4+3*c^4+(7*b^2+5*b*c+7*c^2)*b*c)*(b-c)^2*a^3+(b+c)*(b^4+c^4+2*(b-c)^2*b*c)*b*c*a^2-(b^2-c^2)^2*(b^4+c^4+(b^2-b*c+c^2)*b*c)*a+(b^2-c^2)^3*(b-c)*b*c) : : (barys)
= lies on these lines: {500, 1064}, {517, 13630}
= [ 0.4943980419473895, 1.4811091259533970, 2.3870975291947710 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου