Παρασκευή 25 Οκτωβρίου 2019

HYACINTHOS 26933

[Antreas P. Hatzipolakis]:

Let ABC be a triangle.

Denote:

A', B', C' = the the reflections of I in BC, CA, AB, resp.
 
A", B", C" = the antipodes of A', B', C' in the circumcircle of A'B'C', resp.
 
Α'Β'C', A"B"C" are orthologic.
The orthologic center (A"B"C", A'B'C') is the de Longchamps point of A'B'C'.
Which point is it wrt triangle ABC?
(ie the perpendiculars from A", B", C" to B'C', C'A', A'B', resp. are concurrent.
Which is the point of concurrence on the OI line?)
 
 
[César Lozada]:

 

Not a big deal to be added, but as A’B’C’ and A”B”C” are symmetric triangles with respect to a point, they are homothetic and orthologic, the orthologic centers being the orthocenters of each triangle (also these centers are symmetric w/r to the center of symmetry). Then, if I is replaced for any other point P=u:v:w (trilinears), the orthologic centers are:

Q’ = Q(A’->A”) = -a*b*c*u*(b*w*u + c*u*v-a*v*w) - 2*u*(v^2*SC*c^2 + b^2*SB*w^2) + 2*b*a*(2*SA + SB)*v*w^2 + 2*c*a*(2*SA + SC)*v^2*w : :  (trilinears)

Q” = Q(A”->A’) = -a*b*c*u*(a*v*w + b*w*u + c*u*v) + 2*SA*a*v*w*(c*v + b*w) - 2*u*(v^2*SC*c^2 + b^2*SB*w^2) : : (trilinears)

ETC pairs, excluding circumcircle and infinity:

(P,Q’(P) ): (1,5697), (3,382), (4,11412), (15,13), (16,14), (36,9897), (54,2888), (501,13514), (1157,11671)

(P,Q”(P)): (1, 5903), (2,11188), (3,3), (4,5889), (5,13368), (15,13), (16,14), (23,895), (36,1), (54,195), (59,651), (186,110), (187,2482), (249,110), (250,648), (501,1), (1157,3), (1687,1689), (1688,1690), (2065,2987), (2070,195), (2459,13873), (2460,13926), (5961,14889), (10419,2986), (15380,2989), (15381,2990), (15382,2991), (15404,14919)

Some others:

Q’(G) = X(6)X(110) ∩ X(20)X(185)

= ((b^2+c^2)*a^4-7*b^2*c^2*a^2-( b^4-3*b^2*c^2+c^4)*(b^2+c^2))* a^2 :: (barycentrics)

 

= 4*X(6)-3*X(5640), 4*X(6)-X(12272), 2*X(51)-3*X(5032), 2*X(69)-3*X(7998), X(193)+2*X(6467), 2*X(193)+X(12220), 3*X(373)-2*X(14913), 16*X(575)-13*X(15028), 2*X(1351)+X(12283), 4*X(1353)-X(6403), 2*X(1843)-3*X(11002), 3*X(5640)-2*X(11188), 3*X(5640)-X(12272), X(5889)+2*X(15073), 4*X(6467)-X(12220)

 

= on lines: {2, 8681}, {6, 110}, {20, 185}, {51, 5032}, {54, 5050}, {68, 6804}, {69, 3266}, {195, 11255}, {323, 11511}, {373, 14913}, {524, 2979}, {542, 15305}, {568, 1353}, {575, 9545}, {1351, 11456}, {1598, 5093}, {1843, 11002}, {1992, 2393}, {1993, 10602}, {1994, 8541}, {3313, 11008}, {3564, 11459}, {3620, 5650}, {3629, 8705}, {3917, 11160}, {5890, 14984}, {5921, 15030}, {8550, 10574}, {8584, 9971}, {9730, 14912}, {9781, 11482}, {11412, 15074}, {11898, 15067}, {15056, 15069}

 

= reflection of X(i) in X(j) for these (i,j): (568, 1353), (3060, 1992), (5921, 15030), (6403, 568), (9971, 8584), (11160, 3917), (11188, 6), (11898, 15067), (12272, 11188), (15072, 6776)

= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (6, 11188, 5640), (193, 6467, 12220), (5640, 12272, 11188)

= [ 1.1010140223589690, 4.5168588202248770, 0.0054480575860942 ]

 

Q’(N) = X(20)X(1154) ∩ X(206)X(576)

= (2*cos(4*A)-1)*cos(B-C)-2*cos( 3*A)*cos(2*(B-C))+4*cos(3*A) (trilinears)

= ((3*R^2+2*SW)*SA^2+(2*R^4+6*R^ 2*SW-4*SW^2)*SA-(23*R^2-6*SW)* S^2)*(SB+SC) :: (barys)

= 4*X(54)-3*X(5946), 2*X(2888)-3*X(15067), 3*X(5946)-2*X(13368), 4*X(6153)-5*X(15026), X(10263)+2*X(12291)

 

= on lines: {20, 1154}, {54, 5946}, {143, 9706}, {156, 11702}, {195, 1614}, {206, 576}, {2888, 15067}, {3448, 13418}, {6153, 15026}, {10610, 11577}, {10627, 12325}, {12316, 13391}

 

= midpoint of X(195) and X(12291)

= reflection of X(i) in X(j) for these (i,j): (10263, 195), (10610, 11577), (12325, 10627), (13368, 54), (13423, 143), (13491, 12254)

= {X(54), X(13368)}-Harmonic conjugate of X(5946)

= [ -31.3424041105588000, 37.2729065668630200, -7.6979304748936540 ]

 

Q’(X(6)) = reflection of X(6) in X(599)

= 5*a^2-4*b^2-4*c^2 : :  (barys)

= 4*X(2)-3*X(6), X(2)-3*X(69), 5*X(2)-6*X(141), 7*X(2)-3*X(193), 7*X(2)-6*X(597), 2*X(2)-3*X(599), 5*X(2)-3*X(1992), 13*X(2)-12*X(3589), 17*X(2)-15*X(3618), 11*X(2)-15*X(3620), 11*X(2)-6*X(3629), X(2)+6*X(3630), 7*X(2)-12*X(3631), 14*X(2)-15*X(3763), 13*X(2)-9*X(5032), 10*X(2)-3*X(6144), 13*X(2)-3*X(11008), X(2)+3*X(11160), X(6)-4*X(69), 5*X(6)-8*X(141), 7*X(6)-4*X(193), 7*X(6)-8*X(597), 5*X(6)-4*X(1992), 13*X(6)-16*X(3589), 17*X(6)-20*X(3618), 11*X(6)-20*X(3620), 11*X(6)-8*X(3629), X(6)+8*X(3630), 7*X(6)-16*X(3631), 7*X(6)-10*X(3763), 13*X(6)-12*X(5032), 5*X(6)-2*X(6144), 9*X(6)-8*X(8584), 13*X(6)-4*X(11008), X(6)+4*X(11160), 5*X(69)-2*X(141), 7*X(69)-X(193), 7*X(69)-2*X(597), 5*X(69)-X(1992), 13*X(69)-4*X(3589), 17*X(69)-5*X(3618), 19*X(69)-7*X(3619), 11*X(69)-5*X(3620), 11*X(69)-2*X(3629), X(69)+2*X(3630), 7*X(69)-4*X(3631), 14*X(69)-5*X(3763)

 

= on lines: {2, 6}, {22, 2930}, {30, 15069}, {76, 11317}, {99, 10488}, {154, 5648}, {315, 8352}, {381, 11477}, {511, 3830}, {518, 4677}, {519, 4655}, {532, 11296}, {533, 11295}, {538, 5077}, {542, 1350}, {549, 10541}, {576, 5055}, {671, 7850}, {732, 11055}, {754, 11159}, {1351, 11178}, {1352, 3845}, {1503, 11001}, {1975, 9855}, {2482, 5210}, {2854, 2979}, {3053, 7801}, {3416, 4669}, {3524, 8550}, {3564, 8703}, {3917, 9027}, {3933, 5023}, {5013, 7810}, {5066, 10516}, {5085, 5965}, {5102, 5476}, {5309, 10542}, {5463, 11480}, {5464, 11481}, {5585, 6390}, {5969, 11161}, {6179, 8366}, {7751, 11318}, {7754, 7883}, {7758, 8359}, {7768, 7841}, {7775, 7882}, {7811, 8716}, {7813, 11165}, {7817, 7896}, {7827, 7879}, {8355, 13881}, {8369, 14023}, {8546, 15246}, {8594, 11128}, {8595, 11129}, {9466, 13330}, {9830, 11057}, {9887, 9983}, {11164, 14712}, {11173, 14537}, {11179, 12100}, {11216, 13857}

 

= midpoint of X(69) and X(11160)

= reflection of X(i) in X(j) for these (i,j): (6, 599), (193, 597), (597, 3631), (599, 69), (1351, 11178), (1992, 141), (6144, 1992), (10488, 99), (11160, 3630), (11477, 381), (13330, 9466)

= anticomplement of X(8584)

= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (69, 193, 3631), (141, 6144, 6), (183, 7840, 11184), (193, 3631, 3763), (193, 3763, 6), (591, 1991, 7610), (5858, 5859, 8667), (5860, 5861, 9740), (9770, 20022, 11168), (13846, 13847, 230)

= [ 7.5387496847578630, 2.5435618855077350, -1.5996859087169130 ]

 

Q”(X(6)) = reflection of X(6) in X(1992)

= 7*a^2-2*b^2-2*c^2 : : (barycentrics)

= 2*X(2)-3*X(6), 5*X(2)-3*X(69), 7*X(2)-6*X(141), X(2)+3*X(193), 5*X(2)-6*X(597), 4*X(2)-3*X(599), X(2)-3*X(1992), 11*X(2)-12*X(3589), 13*X(2)-15*X(3618), 19*X(2)-15*X(3620), X(2)-6*X(3629), 13*X(2)-6*X(3630), 17*X(2)-12*X(3631), 16*X(2)-15*X(3763), 5*X(2)-9*X(5032), 4*X(2)+3*X(6144), 7*X(2)+3*X(11008), 7*X(2)-3*X(11160), 5*X(6)-2*X(69), 7*X(6)-4*X(141), X(6)+2*X(193), 5*X(6)-4*X(597), 11*X(6)-8*X(3589), 13*X(6)-10*X(3618), 23*X(6)-14*X(3619), 19*X(6)-10*X(3620), X(6)-4*X(3629), 13*X(6)-4*X(3630), 17*X(6)-8*X(3631), 8*X(6)-5*X(3763), 5*X(6)-6*X(5032), 2*X(6)+X(6144), 19*X(6)-16*X(6329), 3*X(6)-4*X(8584), 7*X(6)+2*X(11008), 7*X(6)-2*X(11160), 7*X(69)-10*X(141), X(69)+5*X(193), 4*X(69)-5*X(599), X(69)-5*X(1992), 11*X(69)-20*X(3589), X(69)-10*X(3629), 13*X(69)-10*X(3630), 17*X(69)-20*X(3631), X(69)-3*X(5032), 4*X(69)+5*X(6144)

 

= on lines: {2, 6}, {25, 2930}, {30, 11477}, {32, 12151}, {51, 9027}, {99, 8787}, {187, 11165}, {194, 9855}, {376, 8550}, {381, 576}, {511, 3534}, {518, 3899}, {519, 5695}, {532, 11295}, {533, 11296}, {538, 11159}, {542, 1351}, {543, 10488}, {575, 5054}, {732, 12156}, {754, 5077}, {895, 8877}, {1350, 1353}, {1352, 5066}, {1384, 2482}, {1853, 11216}, {2502, 10554}, {2854, 3060}, {3167, 5648}, {3416, 4745}, {3524, 10541}, {3564, 3845}, {3679, 4663}, {3751, 4677}, {3767, 8355}, {3793, 8182}, {3849, 7798}, {3882, 5043}, {4644, 4969}, {4669, 5847}, {4675, 4700}, {5017, 14645}, {5052, 14711}, {5055, 11482}, {5064, 8541}, {5085, 12100}, {5093, 5476}, {5097, 11178}, {5107, 11648}, {5210, 7618}, {5319, 8360}, {5463, 11485}, {5464, 11486}, {5477, 11173}, {5480, 11180}, {5839, 7277}, {5969, 8593}, {6353, 15471}, {6636, 8546}, {6776, 11001}, {7529, 13431}, {7622, 10485}, {7739, 10542}, {7754, 7812}, {7758, 8369}, {7759, 11318}, {7760, 7841}, {7762, 8352}, {7775, 7805}, {7776, 7817}, {7784, 7827}, {7796, 8366}, {7801, 7890}, {7810, 9605}, {7839, 9939}, {7883, 7894}, {7926, 9166}, {8359, 14023}, {8540, 11238}, {8542, 15004}, {8598, 8716}, {8681, 9971}, {9830, 10754}, {10109, 14561}, {11663, 14449}, {11742, 14712}

 

= midpoint of X(i) and X(j) for these {i,j}: {193, 1992}, {599, 6144}, {11008, 11160}

= reflection of X(i) in X(j) for these (i,j): (2, 8584), (6, 1992), (69, 597), (99, 8787), (376, 8550), (381, 576), (599, 6), (1350, 11179), (1853, 11216), (1992, 3629), (3679, 4663), (5648, 15303), (10516, 5093), (11160, 141), (11178, 5097), (11179, 1353), (11180, 5480), (11898, 11178), (15069, 381)

 

= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (2, 1992, 8584), (2, 8584, 6), (6, 193, 6144), (69, 1992, 5032), (69, 5032, 597), (193, 3629, 6), (385, 11163, 7610), (591, 1991, 11184), (597, 5032, 6), (3180, 3181, 7777), (5858, 5859, 9766), (6189, 6190, 8859), (7736, 9740, 11168), (7837, 14614, 9766), (11168, 15480, 9740)

= [ -2.2800120997804270, 0.9622631711438901, 4.0267955633218840 ]

 

César Lozada

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου