Πέμπτη 24 Οκτωβρίου 2019

HYACINTHOS 26780

[Antreas P. Hatzipolakis]:
 
 
Let ABC be a triangle and A'B'C', A"B"C" the antimedial, medial triangle, resp.

Denote:

Na, Nb, Nc = the NPC centers of HB'C', HC'A', HA'B', resp. (H of ABC = O of A'B'C')
 
The triangles A"B"C", NaNbNc are circumcyclologic.
ie the circumcircles of A"B"C"[ = NPC of ABC] , A"NbNc, B"NcNa, C"NaNb are concurrent.
the circumcircles of NaNbNc, NaB"C", NbC"A", NcA"B" are concurrent.

1.  Cyclologic centers?

Denote:

R1 = the radical axis of the circumcircles of (NbC"A"), (NcA"B")
R2 = the radical axis of the circumcircles of (NcA"B"), (NaB"C")
R3 = the radical axis of the circumcircles of (NaB"C"), (NbC"A")

2. The parallels to R1, R2, R3 through A, B, C, resp.  are concurrent

3. The parallels to R1, R2, R3 through A', B', C', resp.  are concurrent


[Peter Moses]:
 
 
Hi Antreas,

1)
A"NbNa:

(b-c)^2 (b+c)^2 (-a^2+b^2-c^2) (a^2+b^2-c^2) (-a^6+3 a^4 b^2-3 a^2 b^4+b^6+3 a^4 c^2-b^4 c^2-3 a^2 c^4-b^2 c^4+c^6) (a^10-3 a^8 b^2+2 a^6 b^4+2 a^4 b^6-3 a^2 b^8+b^10-3 a^8 c^2+6 a^6 b^2 c^2-6 a^4 b^4 c^2+6 a^2 b^6 c^2-3 b^8 c^2+2 a^6 c^4-6 a^4 b^2 c^4-2 a^2 b^4 c^4+2 b^6 c^4+2 a^4 c^6+6 a^2 b^2 c^6+2 b^4 c^6-3 a^2 c^8-3 b^2 c^8+c^10):: 
on the 9-point-circle and the line {113,2904}..

Searches: {-1.82759603520802955561008400241,1.02763616105290719065306588311,3.77272992512068776602473364608}.

NaB"C"
a^2 (a^4-2 a^2 b^2+b^4-2 a^2 c^2+c^4) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-3 a^4 c^2+b^4 c^2+3 a^2 c^4+b^2 c^4-c^6) (a^16-5 a^14 b^2+9 a^12 b^4-5 a^10 b^6-5 a^8 b^8+9 a^6 b^10-5 a^4 b^12+a^2 b^14-5 a^14 c^2+20 a^12 b^2 c^2-29 a^10 b^4 c^2+22 a^8 b^6 c^2-15 a^6 b^8 c^2+8 a^4 b^10 c^2+a^2 b^12 c^2-2 b^14 c^2+9 a^12 c^4-29 a^10 b^2 c^4+22 a^8 b^4 c^4-2 a^6 b^6 c^4-3 a^4 b^8 c^4-9 a^2 b^10 c^4+12 b^12 c^4-5 a^10 c^6+22 a^8 b^2 c^6-2 a^6 b^4 c^6+7 a^2 b^8 c^6-30 b^10 c^6-5 a^8 c^8-15 a^6 b^2 c^8-3 a^4 b^4 c^8+7 a^2 b^6 c^8+40 b^8 c^8+9 a^6 c^10+8 a^4 b^2 c^10-9 a^2 b^4 c^10-30 b^6 c^10-5 a^4 c^12+a^2 b^2 c^12+12 b^4 c^12+a^2 c^14-2 b^2 c^14)::

Searches: {3.93293344952366861515990753792,-0.301169920748495080075956879553,2.03396668110702864386636869392}.

2)
(a^2-b^2-c^2) (a^4-2 a^2 b^2+b^4-2 b^2 c^2+c^4) (a^4+b^4-2 a^2 c^2-2 b^2 c^2+c^4) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-3 a^4 c^2-2 a^2 b^2 c^2+b^4 c^2+3 a^2 c^4+b^2 c^4-c^6) (a^6-a^4 b^2-a^2 b^4+b^6-3 a^4 c^2-3 b^4 c^2+3 a^2 c^4+3 b^2 c^4-c^6) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-a^4 c^2+3 b^4 c^2-a^2 c^4-3 b^2 c^4+c^6):: 
on lines {{68,2072},{5962,13579}}.
X(921)-isoconjugate of X(2904).
barycentric quotient X(1609)/X(2904).

Searches: {0.0222394784188174931032893129074,5.86107742647442664243398335160,-0.427268880306601261537458439184}.

3)
3 a^28-30 a^26 b^2+133 a^24 b^4-340 a^22 b^6+539 a^20 b^8-506 a^18 b^10+165 a^16 b^12+264 a^14 b^14-495 a^12 b^16+462 a^10 b^18-297 a^8 b^20+140 a^6 b^22-47 a^4 b^24+10 a^2 b^26-b^28-30 a^26 c^2+242 a^24 b^2 c^2-852 a^22 b^4 c^2+1716 a^20 b^6 c^2-2194 a^18 b^8 c^2+1926 a^16 b^10 c^2-1368 a^14 b^12 c^2+1080 a^12 b^14 c^2-1026 a^10 b^16 c^2+894 a^8 b^18 c^2-596 a^6 b^20 c^2+276 a^4 b^22 c^2-78 a^2 b^24 c^2+10 b^26 c^2+133 a^24 c^4-852 a^22 b^2 c^4+2302 a^20 b^4 c^4-3420 a^18 b^6 c^4+3051 a^16 b^8 c^4-1624 a^14 b^10 c^4+292 a^12 b^12 c^4+536 a^10 b^14 c^4-965 a^8 b^16 c^4+1004 a^6 b^18 c^4-674 a^4 b^20 c^4+260 a^2 b^22 c^4-43 b^24 c^4-340 a^22 c^6+1716 a^20 b^2 c^6-3420 a^18 b^4 c^6+3476 a^16 b^6 c^6-1912 a^14 b^8 c^6+552 a^12 b^10 c^6-200 a^10 b^12 c^6+456 a^8 b^14 c^6-820 a^6 b^16 c^6+868 a^4 b^18 c^6-476 a^2 b^20 c^6+100 b^22 c^6+539 a^20 c^8-2194 a^18 b^2 c^8+3051 a^16 b^4 c^8-1912 a^14 b^6 c^8+534 a^12 b^8 c^8-28 a^10 b^10 c^8-82 a^8 b^12 c^8+296 a^6 b^14 c^8-593 a^4 b^16 c^8+510 a^2 b^18 c^8-121 b^20 c^8-506 a^18 c^10+1926 a^16 b^2 c^10-1624 a^14 b^4 c^10+552 a^12 b^6 c^10-28 a^10 b^8 c^10-12 a^8 b^10 c^10-24 a^6 b^12 c^10+136 a^4 b^14 c^10-314 a^2 b^16 c^10+22 b^18 c^10+165 a^16 c^12-1368 a^14 b^2 c^12+292 a^12 b^4 c^12-200 a^10 b^6 c^12-82 a^8 b^8 c^12-24 a^6 b^10 c^12+68 a^4 b^12 c^12+88 a^2 b^14 c^12+165 b^16 c^12+264 a^14 c^14+1080 a^12 b^2 c^14+536 a^10 b^4 c^14+456 a^8 b^6 c^14+296 a^6 b^8 c^14+136 a^4 b^10 c^14+88 a^2 b^12 c^14-264 b^14 c^14-495 a^12 c^16-1026 a^10 b^2 c^16-965 a^8 b^4 c^16-820 a^6 b^6 c^16-593 a^4 b^8 c^16-314 a^2 b^10 c^16+165 b^12 c^16+462 a^10 c^18+894 a^8 b^2 c^18+1004 a^6 b^4 c^18+868 a^4 b^6 c^18+510 a^2 b^8 c^18+22 b^10 c^18-297 a^8 c^20-596 a^6 b^2 c^20-674 a^4 b^4 c^20-476 a^2 b^6 c^20-121 b^8 c^20+140 a^6 c^22+276 a^4 b^2 c^22+260 a^2 b^4 c^22+100 b^6 c^22-47 a^4 c^24-78 a^2 b^2 c^24-43 b^4 c^24+10 a^2 c^26+10 b^2 c^26-c^28:: 
on line {186,6193}.

Searches: {7.84362742062851973721652576293,-6.46341726797141680258589711071,4.49520224252065854927019582702}.


Best regards,
Peter Moses.

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου