Πέμπτη 24 Οκτωβρίου 2019

HYACINTHOS 26778

[Antreas P. Hatzipolakis]:
 
 
Let ABC be a triangle.

Denote:

A'B'C' = the pedal triangle of O
A"B"C" = the pedal triangle of O' [=circumcenter of A'B'C' = N] wrt triangle A'B'C'
(ie A'B'C' = the medial tiangle of ABC, A"B"C"= the medial triangle of A'B'C')

Na, Nb, Nc = the NPC centers of OBC, OCA, OAB, resp.

The triangles A"B"C", NaNbNc are circumcyclologic.
ie the circumcircles of A"B"C", A"NbNc, B"NcNa, C"NaNb are concurrent.
the circumcircles of NaNbNc, NaB"C", NbC"A", NcA"B" are concurrent.

1.  Cyclologic centers?

Denote:

R1 = the radical axis of the circumcircles of (NbC"A"), (NcA"B")
R2 = the radical axis of the circumcircles of (NcA"B"), (NaB"C")
R3 = the radical axis of the circumcircles of (NaB"C"), (NbC"A")
 
2. The parallels to R1, R2, R3 through A, B, C, resp.  are concurrent
 
3. The parallels to R1, R2, R3 through A', B', C', resp.  are concurrent
 
 
[Peter Moses]:


Hi Antreas,

1).
A"NbNc.
(a^2-b^2-c^2) (2 a^22-12 a^20 b^2+27 a^18 b^4-21 a^16 b^6-20 a^14 b^8+56 a^12 b^10-42 a^10 b^12-2 a^8 b^14+26 a^6 b^16-20 a^4 b^18+7 a^2 b^20-b^22-12 a^20 c^2+60 a^18 b^2 c^2-117 a^16 b^4 c^2+112 a^14 b^6 c^2-52 a^12 b^8 c^2-12 a^10 b^10 c^2+78 a^8 b^12 c^2-120 a^6 b^14 c^2+96 a^4 b^16 c^2-40 a^2 b^18 c^2+7 b^20 c^2+27 a^18 c^4-117 a^16 b^2 c^4+184 a^14 b^4 c^4-140 a^12 b^6 c^4+82 a^10 b^8 c^4-114 a^8 b^10 c^4+188 a^6 b^12 c^4-184 a^4 b^14 c^4+95 a^2 b^16 c^4-21 b^18 c^4-21 a^16 c^6+112 a^14 b^2 c^6-140 a^12 b^4 c^6+48 a^10 b^6 c^6+30 a^8 b^8 c^6-136 a^6 b^10 c^6+176 a^4 b^12 c^6-120 a^2 b^14 c^6+35 b^16 c^6-20 a^14 c^8-52 a^12 b^2 c^8+82 a^10 b^4 c^8+30 a^8 b^6 c^8+84 a^6 b^8 c^8-68 a^4 b^10 c^8+90 a^2 b^12 c^8-34 b^14 c^8+56 a^12 c^10-12 a^10 b^2 c^10-114 a^8 b^4 c^10-136 a^6 b^6 c^10-68 a^4 b^8 c^10-64 a^2 b^10 c^10+14 b^12 c^10-42 a^10 c^12+78 a^8 b^2 c^12+188 a^6 b^4 c^12+176 a^4 b^6 c^12+90 a^2 b^8 c^12+14 b^10 c^12-2 a^8 c^14-120 a^6 b^2 c^14-184 a^4 b^4 c^14-120 a^2 b^6 c^14-34 b^8 c^14+26 a^6 c^16+96 a^4 b^2 c^16+95 a^2 b^4 c^16+35 b^6 c^16-20 a^4 c^18-40 a^2 b^2 c^18-21 b^4 c^18+7 a^2 c^20+7 b^2 c^20-c^22):: 
on line {6699,10116}.
Searches: {4.85785120633709213951659419558,2.11555071196226464581450185470,-0.0660327216066158699147273487116}.

NaB"C".
a^24 b^4-10 a^22 b^6+44 a^20 b^8-110 a^18 b^10+165 a^16 b^12-132 a^14 b^14+132 a^10 b^18-165 a^8 b^20+110 a^6 b^22-44 a^4 b^24+10 a^2 b^26-b^28-4 a^24 b^2 c^2+24 a^22 b^4 c^2-54 a^20 b^6 c^2+44 a^18 b^8 c^2+42 a^16 b^10 c^2-192 a^14 b^12 c^2+420 a^12 b^14 c^2-696 a^10 b^16 c^2+816 a^8 b^18 c^2-632 a^6 b^20 c^2+306 a^4 b^22 c^2-84 a^2 b^24 c^2+10 b^26 c^2+a^24 c^4+24 a^22 b^2 c^4-140 a^20 b^4 c^4+306 a^18 b^6 c^4-357 a^16 b^8 c^4+308 a^14 b^10 c^4-416 a^12 b^12 c^4+848 a^10 b^14 c^4-1361 a^8 b^16 c^4+1412 a^6 b^18 c^4-884 a^4 b^20 c^4+302 a^2 b^22 c^4-43 b^24 c^4-10 a^22 c^6-54 a^20 b^2 c^6+306 a^18 b^4 c^6-508 a^16 b^6 c^6+392 a^14 b^8 c^6-108 a^12 b^10 c^6-296 a^10 b^12 c^6+984 a^8 b^14 c^6-1582 a^6 b^16 c^6+1378 a^4 b^18 c^6-602 a^2 b^20 c^6+100 b^22 c^6+44 a^20 c^8+44 a^18 b^2 c^8-357 a^16 b^4 c^8+392 a^14 b^6 c^8-144 a^12 b^8 c^8+44 a^10 b^10 c^8-298 a^8 b^12 c^8+944 a^6 b^14 c^8-1268 a^4 b^16 c^8+720 a^2 b^18 c^8-121 b^20 c^8-110 a^18 c^10+42 a^16 b^2 c^10+308 a^14 b^4 c^10-108 a^12 b^6 c^10+44 a^10 b^8 c^10+48 a^8 b^10 c^10-252 a^6 b^12 c^10+748 a^4 b^14 c^10-518 a^2 b^16 c^10+22 b^18 c^10+165 a^16 c^12-192 a^14 b^2 c^12-416 a^12 b^4 c^12-296 a^10 b^6 c^12-298 a^8 b^8 c^12-252 a^6 b^10 c^12-472 a^4 b^12 c^12+172 a^2 b^14 c^12+165 b^16 c^12-132 a^14 c^14+420 a^12 b^2 c^14+848 a^10 b^4 c^14+984 a^8 b^6 c^14+944 a^6 b^8 c^14+748 a^4 b^10 c^14+172 a^2 b^12 c^14-264 b^14 c^14-696 a^10 b^2 c^16-1361 a^8 b^4 c^16-1582 a^6 b^6 c^16-1268 a^4 b^8 c^16-518 a^2 b^10 c^16+165 b^12 c^16+132 a^10 c^18+816 a^8 b^2 c^18+1412 a^6 b^4 c^18+1378 a^4 b^6 c^18+720 a^2 b^8 c^18+22 b^10 c^18-165 a^8 c^20-632 a^6 b^2 c^20-884 a^4 b^4 c^20-602 a^2 b^6 c^20-121 b^8 c^20+110 a^6 c^22+306 a^4 b^2 c^22+302 a^2 b^4 c^22+100 b^6 c^22-44 a^4 c^24-84 a^2 b^2 c^24-43 b^4 c^24+10 a^2 c^26+10 b^2 c^26-c^28::
Searches: {1.97758646397124305413159842541,2.77995375286296578117901323603,0.803348900400213691164455127367}.

2)
(a^2-b^2-c^2) (a^4-2 a^2 b^2+b^4-2 b^2 c^2+c^4) (a^4+b^4-2 a^2 c^2-2 b^2 c^2+c^4) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-3 a^4 c^2-2 a^2 b^2 c^2+b^4 c^2+3 a^2 c^4+b^2 c^4-c^6) (a^6-a^4 b^2-a^2 b^4+b^6-3 a^4 c^2-3 b^4 c^2+3 a^2 c^4+3 b^2 c^4-c^6) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-a^4 c^2+3 b^4 c^2-a^2 c^4-3 b^2 c^4+c^6):: 
on lines {{68,2072},{5962,13579}}.
X(921)-isoconjugate of X(2904).
barycentric quotient X(1609)/X(2904).
Searches: {0.0222394784188174931032893129074,5.86107742647442664243398335160,-0.427268880306601261537458439184}.

3)
a^2 (a^4-2 a^2 b^2+b^4-2 a^2 c^2+c^4) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-3 a^4 c^2+b^4 c^2+3 a^2 c^4+b^2 c^4-c^6) (a^16-5 a^14 b^2+9 a^12 b^4-5 a^10 b^6-5 a^8 b^8+9 a^6 b^10-5 a^4 b^12+a^2 b^14-5 a^14 c^2+20 a^12 b^2 c^2-29 a^10 b^4 c^2+22 a^8 b^6 c^2-15 a^6 b^8 c^2+8 a^4 b^10 c^2+a^2 b^12 c^2-2 b^14 c^2+9 a^12 c^4-29 a^10 b^2 c^4+22 a^8 b^4 c^4-2 a^6 b^6 c^4-3 a^4 b^8 c^4-9 a^2 b^10 c^4+12 b^12 c^4-5 a^10 c^6+22 a^8 b^2 c^6-2 a^6 b^4 c^6+7 a^2 b^8 c^6-30 b^10 c^6-5 a^8 c^8-15 a^6 b^2 c^8-3 a^4 b^4 c^8+7 a^2 b^6 c^8+40 b^8 c^8+9 a^6 c^10+8 a^4 b^2 c^10-9 a^2 b^4 c^10-30 b^6 c^10-5 a^4 c^12+a^2 b^2 c^12+12 b^4 c^12+a^2 c^14-2 b^2 c^14)::
Searches: {3.93293344952366861515990753792,-0.301169920748495080075956879553,2.03396668110702864386636869392}.


Best regards,
Peter Moses.

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου