Τετάρτη 23 Οκτωβρίου 2019

HYACINTHOS 25843

 [Antreas P. Hatzipolakis]:
 

Let ABC be a triangle and A'B'C' the pedal triangle of N.

Denote:

A"B"C" = the pedal triangle of N wrt triangle A'B'C'.

La, Lb, Lc = The Euler lines of A'B"C", B'C"A", C'A"B", resp.
 
1. La, Lb, Lc are concurrent.

2. The parallels to La, Lb, Lc through A', B', C', resp. are concurrent.


[Peter Moses]:


Hi Antreas,
 
1). a^2 (a^12 b^2-4 a^10 b^4+5 a^8 b^6-5 a^4 b^10+4 a^2 b^12-b^14+a^12 c^2-6 a^10 b^2 c^2+6 a^8 b^4 c^2+a^6 b^6 c^2+6 a^4 b^8 c^2-15 a^2 b^10 c^2+7 b^12 c^2-4 a^10 c^4+6 a^8 b^2 c^4-4 a^6 b^4 c^4-5 a^4 b^6 c^4+22 a^2 b^8 c^4-15 b^10 c^4+5 a^8 c^6+a^6 b^2 c^6-5 a^4 b^4 c^6-22 a^2 b^6 c^6+9 b^8 c^6+6 a^4 b^2 c^8+22 a^2 b^4 c^8+9 b^6 c^8-5 a^4 c^10-15 a^2 b^2 c^10-15 b^4 c^10+4 a^2 c^12+7 b^2 c^12-c^14):: 
on lines {{5,6153},{30,5462},{51,3153}, {182,5899},{186,5943},{511, 2072},...}.
midpoint of X(i) and X(j) for these {i,j}: {{5,11692},{1568,11800}}.
3 X[51] + X[3153], X[186] - 3 X[5943].
Searches: {0. 310635902977653405216625022515 ,-0. 114914211941931691727354512037 ,3. 57685005803141485652192821583} .
 
2). X(11692).
 
Best regards,
Peter Moses.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου