Let ABC be a triangle and A'B'C' the pedal triangle of I.
Denote:
T1, T2, T3 = the pedal triangles of A, B, C wrt triangle A'B'C'.
Oa, Ob, Oc = the circumcenters of T1, T2, T3, resp.
1. ABC, OaObOc are orthologic
2. A'B'C', OaObOc are orthologic
Orthologic centers?
[Angel Montesdeoca]:
**** 1. Orthologic center (ABC, OaObOc) is X(1389)
Orthologic center ( OaObOc, ABC) is X(7686)
**** 2. Orthologic center (A'B'C', OaObOc) is Z=X(5559) +X(5903)
Z = (a (a^5 (b+c)-(b^2-c^2)^2 (b^2-3 b c+c^2)-a^4 (b^2+4 b c+c^2)+a^3 (-2 b^3+3 b^2 c+3 b c^2-2 c^3)+a (b-c)^2 (b^3-2 b^2 c-2 b c^2+c^3)+a^2 (2 b^4+b^3 c-12 b^2 c^2+b c^3+2 c^4)) : .... : ...),
Z is the midpoint of X(5559) and X(5903) .
with (6,9,13)- search numbers (1.05135765621466, 1.02167741998769, 2.44810734981690)
Orthologic center ( OaObOc, A'B'C') is X(9957).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου