[Antreas P. Hatzipolakis]:
For which other than I points P (A'B'C' = antipedal triangle of a point P) the six points lie on a conic?
(*)
[Angel Montesdeoca]:
triangle of a point P) the six points lie on a conic?> For which other than I points P (A'B'C' = antipedal
[APH]
Is the center of the conic for P = de Longchamps point as simple as it is for P = I ?
(W = ( a(a+b-c)(a-b+c)(b+c) .... etc )
[Angel Montesdeoca]:
Dear Antreas
The coordinates of the center of the conic for P = de Longchamps point are complicated. The first barycentric coordinate is:
3 (b^2-c^2)^8 (25 b^8+188 b^6 c^2+342 b^4 c^4+188 b^2 c^6+25 c^8)
-2 (b^2-c^2)^6 (167 b^10+123 b^8 c^2-1826 b^6 c^4-1826 b^4 c^6+123 b^2 c^8+167 c^10) a^2
+4 (b^2-c^2)^4 (69 b^12-1094 b^10 c^2-277 b^8 c^4+3628 b^6 c^6-277 b^4 c^8-1094 b^2 c^10+69 c^12) a^4
+2 (b^2-c^2)^4 (467 b^10+2599 b^8 c^2-7930 b^6 c^4-7930 b^4 c^6+2599 b^2 c^8+467 c^10) a^6
-(b^2-c^2)^2 (2073 b^12-9110 b^10 c^2-12937 b^8 c^4+44044 b^6 c^6-12937 b^4 c^8-9110 b^2 c^10+2073 c^12) a^8
+4 (b^2-c^2)^2 (165 b^10-3599 b^8 c^2+5098 b^6 c^4+5098 b^4 c^6-3599 b^2 c^8+165 c^10) a^10
+32 (b^2-c^2)^2 (63 b^8+68 b^6 c^2-782 b^4 c^4+68 b^2 c^6+63 c^8) a^12
-4 (b^2-c^2)^2 (549 b^6-1877 b^4 c^2-1877 b^2 c^4+549 c^6) a^14
+(201 b^8-5252 b^6 c^2+9846 b^4 c^4-5252 b^2 c^6+201 c^8) a^16
+22 (39 b^6-23 b^4 c^2-23 b^2 c^4+39 c^6) a^18
-4 (125 b^4-98 b^2 c^2+125 c^4) a^20
+78 (b^2+c^2) a^22
+5 a^24
with (6-9-13)-search numbers (2.00137610678924, 1.52349876340136, 1.66222251949610).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου