[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the cevian triangle of I.
Denote:A2B2C2 = the triangle bounded by L1, L2, L3
The parallelogic center (BC, A1B1C1) is X80
The parallelogic center (ABC, A2B2C2) lies on the OI line.
Hi Antreas,
1)
ABC, A1B1C1 at X(80).
A1B1C1, ABC at:
(b+c) (-2 a^5+a^4 b+3 a^3 b^2-a^2 b^3-a b^4+a^4 c-4 a^3 b c+b^4 c+3 a^3 c^2+2 a b^2 c^2-b^3 c^2-a^2 c^3-b^2 c^3-a c^4+b c^4)::
X[1109]-3 X[1962]
on lines {{1109,1962},{2650,3635},{3957 ,6758}}.
Searches {1.331131536390265404415626654 08,1.1386005366045863187958655 2005,2.23803417053954300345246 744058}.
(b+c) (-2 a^5+a^4 b+3 a^3 b^2-a^2 b^3-a b^4+a^4 c-4 a^3 b c+b^4 c+3 a^3 c^2+2 a b^2 c^2-b^3 c^2-a^2 c^3-b^2 c^3-a c^4+b c^4)::
X[1109]-3 X[1962]
on lines {{1109,1962},{2650,3635},{3957 ,6758}}.
Searches {1.331131536390265404415626654 08,1.1386005366045863187958655 2005,2.23803417053954300345246 744058}.
.
2)
ABC, A2B2C2 at X(36)
A2B2C2, ABC at:
a (b+c) (a^5-2 a^3 b^2+a b^4+a^3 b c+b^4 c-2 a^3 c^2-b^3 c^2-b^2 c^3+a c^4+b c^4)::
on lines {{1,21},{517,3724},{523,663},{ 740,4511},{5844,10459}}.
a (b+c) (a^5-2 a^3 b^2+a b^4+a^3 b c+b^4 c-2 a^3 c^2-b^3 c^2-b^2 c^3+a c^4+b c^4)::
on lines {{1,21},{517,3724},{523,663},{ 740,4511},{5844,10459}}.
Searches {2.747531506085739094744412559 64,2.1233042447210861031541025 1269,0.90259315583020914182194 0643109}.
crossdifference X(579) & X(661).
Best regards,
Peter Moses.
[César Lozada]:
1) Parallelogic centers: Z(A->A1)=X(80) and
Z(A1->A) =
= (b+c)*(2*a^5-(b+c)*a^4-(3*b^2- 4*b*c+3*c^2)*a^3+(b^3+c^3)*a^2 +(b^2-c^2)^2*a-(b^2-c^2)*(b-c) *b*c) : : (barycentrics)
= X(1109)-3*X(1962)
= On lines: {1109,1962}, {2650,3635}, {3957,6758}
= [ 1.331131536390265, 1.13860053660459, 2.238034170539543 ]
2) Parallelogic centers: Z(A->A2)=X(36) and
Z(A2->A) =
= a*(b+c)*(a^5-(2*b^2-b*c+2*c^2) *a^3+(b^4+c^4)*a+(b^2-c^2)*(b- c)*b*c) : : (barycentrics)
= On lines: {1,21}, {517,3724}, {523,663}, {740,4511}, {5844,10459}
= [ 2.747531506085739, 2.12330424472109, 0.902593155830209 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου