[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C', A"B"C" the cevian, pedal triangles of I, resp.
Denote:Note: The Euler line of OaObOc is parallel to OI line (for the Euler line of A"B"C" is the OI line of ABC)
Locus:
Oa, Ob, Oc = the circumcenters of PB'C', PC'A', PA'B', resp.
Which is the locus of P such that OaObOc, A"B"C" are perspective?
Let ABC be a triangle and A'B'C', A"B"C" the cevian, pedal triangles of a point P, resp.
Denote:[Peter Moses]:
>OaObOc, A"B"C" are homothetic.
Hi Antreas,
At a (a+b-c) (a-b+c) (b+c) (a^3-a b^2-3 a b c-2 b^2 c-a c^2-2 b c^2)::
On lines {{1,30},{12,3293},{37,65},{56, 4278},{226,2594},...}.
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,79,500),(1,3649,1464).
crosssum of X(1) and X(500).
crossdifference of every pair of points on line X(3737) X(9404).
>Locus:
A nasty combination of infinity, degree 5 and degree 8.
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου