Τρίτη 22 Οκτωβρίου 2019

HYACINTHOS 24956

[Antreas P. Hatzipolakis]:
 
Let ABC be a triangle and A'B'C' the pedal triangle of H.

Denote:

Oha, Oga = the reflections of O in HA, GA, resp.
Ohb, Ogb = the reflections of O in HB, GB, resp.
Ohc, Ogc = the reflections of O in HC, GC, resp

Ma, Mb, Mc = the perepbdicular bisectors of OhaOga, OhbOgb, OhcOgc, resp.

A*B*C* = the triangle bounded by Ma,Mb,Mc

The triangles A'B'C', A*B*C* are parallelogic.

The parallellogic center (A'B'C', A*B*C*) lies on the Euler line.


[Peter Moses]:


Hi Antreas,
 
>The parallellogic center (A'B'C', A*B*C*) lies on the Euler line.
X(427).

The parallellogic center ( A*B*C*, A'B'C'), a^6-b^6+b^4 c^2+b^2 c^4-c^6::,
lies on lines {{2,1495},{3,2918},{4,51},{5, 10984},{6,5064},{25,125},{30, 343},{64,6145},{66,1843},...}
 
Best regards,
Peter Moses.

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου