Κυριακή 20 Οκτωβρίου 2019

HYACINTHOS 24163

[APH]:
2. Excentral triangle version:

Let ABC be a triangle and IaIbIc the excentral triangle.

Denote:

IaaIabIac = the excentral triangle of IaBC
(the excircle (Iaa) touches BC, the excircle (Iab) touches IaC, the excircle (Iac) touches IaB)

IbaIbbIbc = the excentral triangle of IbCA
(the excircle (Iba) touches IbC, the excircle (Ibb) touches CA, the excircle (Ibc) touches IbA)

IcaIcbIcc = the excentra triangle of IcAB
(the excircle (Ica) touches IcB, the excircle (Icb) touches IcA, the excircle (Icc) touches AB)

The NPCs of AIabIac, BIbcIba, CIcaIcb are concurrent

[Peter Moses]:

Hi Antreas,
 
2) X(10).
 
Best regards,
Peter.
 

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου