[APH]:
[Peter Moses]:
1. Orthic triangle version:
Let ABC be a triangle and A'B'C' the orthic triangle.
Denote:
JaaJabJac = the excetral triangle of AB'C'
(the excircle (Jaa) touches B'C', the excircle (Jab) touches AC', the excircle (Jac) touches AB')
JbaJbbJbc = the excentral triangle of BC'A'
(the excircle (Jba) touches BC', the excircle (Jbb) touches C'A', the excircle (Jbc) touches BA')
JcaJcbJcc = the excentral triangle of CA'B'
(the excircle (Jca) touches CB', the excircle (Jcb) touches CA', the excircle (Jcc) touches A'B')
The NPCs of A'JabJac, B'JbcJba, C'JcaJcb are concurrent.
Hi Antreas,
1) X(389)
Best regards
Peter.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου