Κυριακή 20 Οκτωβρίου 2019

HYACINTHOS 24162

[APH]:

1. Orthic triangle version:

Let ABC be a triangle and A'B'C' the orthic triangle.

Denote:

JaaJabJac = the excetral triangle of AB'C'
(the excircle (Jaa) touches B'C', the excircle (Jab) touches AC', the excircle (Jac) touches AB')
 
JbaJbbJbc = the excentral triangle of BC'A'
(the excircle (Jba) touches BC', the excircle (Jbb) touches C'A', the excircle (Jbc) touches BA')

JcaJcbJcc = the excentral triangle of CA'B'
(the excircle (Jca) touches CB', the excircle (Jcb) touches CA', the excircle (Jcc) touches A'B')

The NPCs of A'JabJac, B'JbcJba, C'JcaJcb are concurrent.
 
[Peter Moses]:

Hi Antreas,
 
1) X(389)
 
Best regards
Peter.
 
 

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου