-
Dear Antreas,
[APH]:
The circles (A,R), (B,R), (C,R) intersect the extensions of the
triangle sides as in the figure:
Ac Ab
\ /
\ /
\ /
\ /
\/ A
/\
/ \
/ \
/ \
/ \
/ \
Bc---------B------------C----------Cb
/ \
/ \
/ \
/ \
Ba Ca
ABa = c + R, ACa = b + R, BCb = a + R, BAb = c + R, CAc = b + R,
CBc = a + R
Which is the radical center of the circumcircles of the
triangles ABaCa, BCbAb, CAcCBc ? Is it something interesting?
--------
I work with slightly different notations for the points.
Ba Ca
\ /
\ /
\ /
\ /
\/ A
/\
/ \
/ \
/ \
/ \
/ \
Ab---------B------------C----------Ac
/ \
/ \
/ \
/ \
Cb Bc
Homogeneous barycentric coordinates:
Bc = (-R : 0 : R+b),
Cb = (-R : R+c : 0).
The circle ABcCb has equation
a^2yz + b^2zx + c^2xy - (x+y+z)(qy+rz) = 0.
Since it passes through Bc and Cb,
-b^2R(R+b) - rb(R+b) = 0 ==> r = -bR;
-c^2R(R+c) - qc(R+c) = 0 ==> q = -cR.
The circle:
a^2yz + b^2zx + c^2xy + R(x+y+z)(cy+bz) = 0.
Similarly write down the equations of the other two circles.
Radical center:
cy + bz = az + cx = bx + ay.
(1/a)(y/b+ z/c) = (1/b)(z/c + x/a) = (1/c)(x/a + y/b)
m(x/a:y/b:z/c) ~ (a:b:c)
(x/a:y/b:z/c) ~ d(a:b:c) = (b+c-a: ... : ...)
(x:y:z) = (a(b+c-a):...:..),
Mittenpunkt!
Best regards.
Sincerely,
Paul Yiu
Σάββατο 19 Οκτωβρίου 2019
HYACINTHOS 2346
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου