Σάββατο 19 Οκτωβρίου 2019

HYACINTHOS 2346

  • Dear Antreas,

    [APH]:
    The circles (A,R), (B,R), (C,R) intersect the extensions of the
    triangle sides as in the figure:

    Ac Ab
    \ /
    \ /
    \ /
    \ /
    \/ A
    /\
    / \
    / \
    / \
    / \
    / \
    Bc---------B------------C----------Cb
    / \
    / \
    / \
    / \
    Ba Ca


    ABa = c + R, ACa = b + R, BCb = a + R, BAb = c + R, CAc = b + R,
    CBc = a + R

    Which is the radical center of the circumcircles of the
    triangles ABaCa, BCbAb, CAcCBc ? Is it something interesting?

    --------

    I work with slightly different notations for the points.


    Ba Ca
    \ /
    \ /
    \ /
    \ /
    \/ A
    /\
    / \
    / \
    / \
    / \
    / \
    Ab---------B------------C----------Ac
    / \
    / \
    / \
    / \
    Cb Bc


    Homogeneous barycentric coordinates:

    Bc = (-R : 0 : R+b),
    Cb = (-R : R+c : 0).

    The circle ABcCb has equation

    a^2yz + b^2zx + c^2xy - (x+y+z)(qy+rz) = 0.

    Since it passes through Bc and Cb,

    -b^2R(R+b) - rb(R+b) = 0 ==> r = -bR;
    -c^2R(R+c) - qc(R+c) = 0 ==> q = -cR.

    The circle:

    a^2yz + b^2zx + c^2xy + R(x+y+z)(cy+bz) = 0.

    Similarly write down the equations of the other two circles.
    Radical center:

    cy + bz = az + cx = bx + ay.

    (1/a)(y/b+ z/c) = (1/b)(z/c + x/a) = (1/c)(x/a + y/b)

    m(x/a:y/b:z/c) ~ (a:b:c)

    (x/a:y/b:z/c) ~ d(a:b:c) = (b+c-a: ... : ...)

    (x:y:z) = (a(b+c-a):...:..),

    Mittenpunkt!

    Best regards.
    Sincerely,
    Paul Yiu


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου