Δευτέρα 21 Οκτωβρίου 2019

HYACINTHOS 23129

Antreas P. Hatzipolakis
 

[APH]:

Let ABC be a triangle with orthocenter H, incenter I and excenters Ia,Ib,Ic.
A',B',C' lie on BC,CA,AB, resp. such that  B'C' _|_ IaH, C'A' _|_ IbH, A'B' _|_ IbH.
Prove that the NPC center of the triangle A'B'C' lies on the line IH.
Variation
 
The perpendiculars to HIa, HIb, HIc from A,B,C bound triangle A"B"C".
Which point is the circumenter of A"B"C" ?
Is it lying on the IH line?
 


[Peter Moses]:


Hi Antreas,
 
Yes, it is on IH.
 
The point is:
 
2 a^10+a^9 b-4 a^8 b^2-3 a^7 b^3+a^6 b^4+3 a^5 b^5+a^4 b^6-a^3 b^7+a^2 b^8-b^10+a^9 c-2 a^8 b c-4 a^7 b^2 c+a^6 b^3 c+4 a^5 b^4 c+3 a^4 b^5 c-a^2 b^7 c-a b^8 c-b^9 c-4 a^8 c^2-4 a^7 b c^2+4 a^6 b^2 c^2+a^5 b^3 c^2-a^4 b^4 c^2+2 a^3 b^5 c^2-2 a^2 b^6 c^2+a b^7 c^2+3 b^8 c^2-3 a^7 c^3+a^6 b c^3+a^5 b^2 c^3-6 a^4 b^3 c^3-a^3 b^4 c^3+a^2 b^5 c^3+3 a b^6 c^3+4 b^7 c^3+a^6 c^4+4 a^5 b c^4-a^4 b^2 c^4-a^3 b^3 c^4+2 a^2 b^4 c^4-3 a b^5 c^4-2 b^6 c^4+3 a^5 c^5+3 a^4 b c^5+2 a^3 b^2 c^5+a^2 b^3 c^5-3 a b^4 c^5-6 b^5 c^5+a^4 c^6-2 a^2 b^2 c^6+3 a b^3 c^6-2 b^4 c^6-a^3 c^7-a^2 b c^7+a b^2 c^7+4 b^3 c^7+a^2 c^8-a b c^8+3 b^2 c^8-b c^9-c^10::
 
Searches {-0.0268745477834600894141063274825,-0.226063404646283397563799394890,3.80957355333186457346903529626}
 
Best regards,
Peter Moses.
 



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου