Antreas P. Hatzipolakis
Let ABC be a triangle with orthocenter H, incenter I and excenters Ia,Ib,Ic.
A',B',C' lie on BC,CA,AB, resp. such that B'C' _|_ IaH, C'A' _|_ IbH, A'B' _|_ IbH.
Prove that the NPC center of the triangle A'B'C' lies on the line IH.
A',B',C' lie on BC,CA,AB, resp. such that B'C' _|_ IaH, C'A' _|_ IbH, A'B' _|_ IbH.
Prove that the NPC center of the triangle A'B'C' lies on the line IH.
References:
Buratino Giggle [=Tran Quang Hung]
https://www.facebook.com/groups/439719556180075/permalink/444311072387590/
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=48&t=625851
Variation
The perpendiculars to HIa, HIb, HIc from A,B,C bound triangle A"B"C".
Which point is the circumenter of A"B"C" ?
Is it lying on the IH line?
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου