Antreas P. Hatzipolakis
Let ABC be a triangle, A'B'C' the orthic triangle and
A"B"C" the Euler triangle (ie A",B",C" are the second
intersections of NPC with AA',BB',CC', resp. = midpoints
of AH,BH,CH, resp.)
Denote:
Ra = the radical axis of ((B', B'C"),(C',C'B"))
Rb = the radical axis of ((C', C'A"),(A',A'C"))
Rc = the radical axis of ((A', A'B"),(B',B'A"))
The Ra,Rb,Rc are concurrent.
Point?
APH
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου