Antreas P. Hatzipolakis
[APH]
Let ABC be a triangle and A'B'C' the cevian triangle I.
Denote:
Ab,Ac = the reflections of A' in BB', CC', resp.
Bc,Ba = the reflections of B' in CC', AA', resp.
Ca,Cb = the reflections of C' in AA', BB', resp.
L,La,Lb,Lc = the Euler lines of ABC, AAbAc, BBcBa, CCaCb, resp.
Ma, Mb, Mc = the reflections of La, Lb, Lc in AA', BB', CC', resp.
1. L, La, Lb, Lc are concurrent (parallel)
2. Ma, Mb, Mc are concurrent.
Point of concurrence?
Let ABC be a triangle and A'B'C' the cevian triangle I.
Denote:
Ab,Ac = the reflections of A' in BB', CC', resp.
Bc,Ba = the reflections of B' in CC', AA', resp.
Ca,Cb = the reflections of C' in AA', BB', resp.
L,La,Lb,Lc = the Euler lines of ABC, AAbAc, BBcBa, CCaCb, resp.
Ma, Mb, Mc = the reflections of La, Lb, Lc in AA', BB', CC', resp.
1. L, La, Lb, Lc are concurrent (parallel)
2. Ma, Mb, Mc are concurrent.
Point of concurrence?
[Angel Montesdeoca]:
**** The lines Ma, Mb, Mc intersect at:
( a(a^9
- a^8(b+c)
- a^7(b-c)^2
+ a^6(2b^3-b^2c-b*c^2+2c^3)
- a^5(3b^4+b^3c-7b^2c^2+b*c^3+3c^4)
+ 4a^4b*c(b-c)^2(b+c)
+ a^3(b^2-c^2)^2(5b^2-4b*c+5c^2)
- a^2(b-c)^2(2b^5+5b^4c+b^3c^2+b^2c^3+5b*c^4+2c^5)
- a(b^2-c^2)^2(2b^4-3b^3c+5b^2c^2-3b*c^3+2c^4)
+ (b-c)^4(b+c)^3(b^2+c^2)) : ... : ...),
with (6-9-13)-search number: 5.63864638926896001044233914
Figure: http://amontes.webs.ull.es/otrashtm/HechosGeometricos.htm#HG250513
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου