Antreas P. Hatzipolakis
Let ABC be a triangle and A'B'C' the cevian triangle I.
Denote:
Ab,Ac = the reflections of A' in BB', CC', resp.
Bc,Ba = the reflections of B' in CC', AA', resp.
Ca,Cb = the reflections of C' in AA', BB', resp.
L,La,Lb,Lc = the Euler lines of ABC, AAbAc, BBcBa, CCaCb, resp.
Ma, Mb, Mc = the reflections of La, Lb, Lc in AA', BB', CC', resp.
1. L, La, Lb, Lc are concurrent (parallel)
2. Ma, Mb, Mc are concurrent.
Point of concurrence?
APH
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου