Let ABC be a triangle and P an arbitrary point. Let A'B'C' be the
cevian triangle and A"B"C" the circumcevian triangle of P, and let
XYZ be the desmic mate of the triangles A'B'C' and A"B"C", i. e.
X = B'C" /\ B"C',
Y = C'A" /\ C"A',
Z = A'B" /\ A"B'.
Then,
(a) the lines AX, BY, CZ concur at a point Q;
(b) the lines A'X, B'Y, C'Z concur at a point Q';
(c) the lines A"X, B"Y, C"Z concur at a point Q".
While (b) and (c) are corollaries of the Desmic Theorem, (a) cannot
be proven in this way. Remark that if P has trilinears P(x:y:z), then
for Q, Q', Q", we get the trilinears
/ a b c \
Q ( -------- : -------- : -------- );
\ x(bz+cy) y(cx+az) z(ay+bx) /
Q' ( ax ((b²z²+c²y²)x + xyzbc + ayz(bz+cy)) : ... );
Q" ( ax ((b²z²+c²y²)x + ayz(bz+cy)) : ... ).
I call Q, Q', Q" the first, second and third umecevian points of P.
(Please don't ask me where the name comes from: I have thought it up,
using the German "Umkreis" and "ceva", and it has not much sense, but
a name is urgently needed.)
Note that the first umecevian point Q is the isogonal of the
complement of the isogonal of P.
A list of triangle centers and their umecevian points follows:
---- P = INCENTER X(1) ----
Point P( 1 : 1 : 1 ) = incenter X(1).
First umecevian point
Q( a/(b+c) : ... ) = isogonal Spieker point X(58).
Second umecevian point
Q'( a(b²+c² + bc+ca+ab) : ... ) = X(386),
intersection of Brocard axis (3,6) and Nagel line
(1,2).
Third umecevian point
Q"( a(b²+c² + ca+ab) : ... ), not in ETC.
---- P = CENTROID X(2) ----
Point P( 1/a : 1/b : 1/c ) = centroid X(2).
First umecevian point
Q( a/(b+c) : ... ) = Sigur symmedian point X(251).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q", not in ETC.
---- P = CIRCUMCENTER X(3) ----
Point P( cos A : cos B : cos C ) = circumcenter X(3).
First umecevian point
Q( sec A : ... ) = orthocenter X(4).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q"( (cos A)[1 - cos A cos(B-C)] : ... ) =
X(185), Nagel point of orthic triangle.
---- P = ORTHOCENTER X(4) ----
Point P( sec A : sec B : sec C ) = orthocenter X(4).
First umecevian point
Q( sec (B-C) : ... ) = Kosnita point X(54).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q"( cos A - cos 2A cos(B-C) : ... ) = Taylor
center X(389). Can somebody find a synthetic
proof?
---- P = NINE-POINT CENTER X(5) ----
Point P( cos (B-C) : cos (C-A) : cos (A-B) ) =
nine-point center X(5).
All three umecevian points are not in ETC.
---- P = SYMMEDIAN POINT X(6) ----
Point P( a : b : c ) = symmedian point X(6).
All three umecevian points Q, Q', Q" coincide
with P = symmedian point X(6). This means that
X lies on AA', etc..
---- P = GERGONNE POINT X(7) ----
Point P( 1/(a(s-a)) : ... ) = Gergonne point X(7).
All three umecevian points are not in ETC.
---- P = NAGEL POINT X(8) ----
Point P( (s-a)/a : ... ) = Nagel point X(8).
All three umecevian points are not in ETC.
---- P = MITTEN POINT X(9) ----
Point P( s-a : s-b : s-c ) = Mitten point X(9).
All three umecevian points are not in ETC.
---- P = SPIEKER POINT X(10) ----
Point P( (b+c)/a : (c+a)/b : (a+b)/c ) =
Spieker point X(10).
All three umecevian points are not in ETC.
---- P = CLAWSON POINT X(19) ----
Point P( tan A : tan B : tan C ) = Clawson point X(19).
First umecevian point
Q( (sin A)/(cos B + cos C) : ... ) = X(284).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q", not in ETC.
---- P = DE LONGCHAMPS POINT X(20) ----
Point P( cos A - cos B cos C ) = de Longchamps
point X(20).
All three umecevian points are not in ETC.
---- P = SCHIFFLER POINT X(21) ----
Point P( (s-a)/(b+c) : ... ) = Schiffler
point X(21).
First umecevian point
Q = X(961).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q", not in ETC.
I am getting tired... Of course, the first umecevian point is
interesting if the point is the isogonal of an anticomplement of
something interesting -- try X(64), for example --. And on the other
hand, the second and the third umecevian points are so complicated
that I don't think that there are more cases where P and Q' are in
ETC.
Something more interesting: If P transverses a line, what curve make
Q, Q' and Q" ??
Sincerely,
Darij Grinberg
cevian triangle and A"B"C" the circumcevian triangle of P, and let
XYZ be the desmic mate of the triangles A'B'C' and A"B"C", i. e.
X = B'C" /\ B"C',
Y = C'A" /\ C"A',
Z = A'B" /\ A"B'.
Then,
(a) the lines AX, BY, CZ concur at a point Q;
(b) the lines A'X, B'Y, C'Z concur at a point Q';
(c) the lines A"X, B"Y, C"Z concur at a point Q".
While (b) and (c) are corollaries of the Desmic Theorem, (a) cannot
be proven in this way. Remark that if P has trilinears P(x:y:z), then
for Q, Q', Q", we get the trilinears
/ a b c \
Q ( -------- : -------- : -------- );
\ x(bz+cy) y(cx+az) z(ay+bx) /
Q' ( ax ((b²z²+c²y²)x + xyzbc + ayz(bz+cy)) : ... );
Q" ( ax ((b²z²+c²y²)x + ayz(bz+cy)) : ... ).
I call Q, Q', Q" the first, second and third umecevian points of P.
(Please don't ask me where the name comes from: I have thought it up,
using the German "Umkreis" and "ceva", and it has not much sense, but
a name is urgently needed.)
Note that the first umecevian point Q is the isogonal of the
complement of the isogonal of P.
A list of triangle centers and their umecevian points follows:
---- P = INCENTER X(1) ----
Point P( 1 : 1 : 1 ) = incenter X(1).
First umecevian point
Q( a/(b+c) : ... ) = isogonal Spieker point X(58).
Second umecevian point
Q'( a(b²+c² + bc+ca+ab) : ... ) = X(386),
intersection of Brocard axis (3,6) and Nagel line
(1,2).
Third umecevian point
Q"( a(b²+c² + ca+ab) : ... ), not in ETC.
---- P = CENTROID X(2) ----
Point P( 1/a : 1/b : 1/c ) = centroid X(2).
First umecevian point
Q( a/(b+c) : ... ) = Sigur symmedian point X(251).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q", not in ETC.
---- P = CIRCUMCENTER X(3) ----
Point P( cos A : cos B : cos C ) = circumcenter X(3).
First umecevian point
Q( sec A : ... ) = orthocenter X(4).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q"( (cos A)[1 - cos A cos(B-C)] : ... ) =
X(185), Nagel point of orthic triangle.
---- P = ORTHOCENTER X(4) ----
Point P( sec A : sec B : sec C ) = orthocenter X(4).
First umecevian point
Q( sec (B-C) : ... ) = Kosnita point X(54).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q"( cos A - cos 2A cos(B-C) : ... ) = Taylor
center X(389). Can somebody find a synthetic
proof?
---- P = NINE-POINT CENTER X(5) ----
Point P( cos (B-C) : cos (C-A) : cos (A-B) ) =
nine-point center X(5).
All three umecevian points are not in ETC.
---- P = SYMMEDIAN POINT X(6) ----
Point P( a : b : c ) = symmedian point X(6).
All three umecevian points Q, Q', Q" coincide
with P = symmedian point X(6). This means that
X lies on AA', etc..
---- P = GERGONNE POINT X(7) ----
Point P( 1/(a(s-a)) : ... ) = Gergonne point X(7).
All three umecevian points are not in ETC.
---- P = NAGEL POINT X(8) ----
Point P( (s-a)/a : ... ) = Nagel point X(8).
All three umecevian points are not in ETC.
---- P = MITTEN POINT X(9) ----
Point P( s-a : s-b : s-c ) = Mitten point X(9).
All three umecevian points are not in ETC.
---- P = SPIEKER POINT X(10) ----
Point P( (b+c)/a : (c+a)/b : (a+b)/c ) =
Spieker point X(10).
All three umecevian points are not in ETC.
---- P = CLAWSON POINT X(19) ----
Point P( tan A : tan B : tan C ) = Clawson point X(19).
First umecevian point
Q( (sin A)/(cos B + cos C) : ... ) = X(284).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q", not in ETC.
---- P = DE LONGCHAMPS POINT X(20) ----
Point P( cos A - cos B cos C ) = de Longchamps
point X(20).
All three umecevian points are not in ETC.
---- P = SCHIFFLER POINT X(21) ----
Point P( (s-a)/(b+c) : ... ) = Schiffler
point X(21).
First umecevian point
Q = X(961).
Second umecevian point
Q', not in ETC.
Third umecevian point
Q", not in ETC.
I am getting tired... Of course, the first umecevian point is
interesting if the point is the isogonal of an anticomplement of
something interesting -- try X(64), for example --. And on the other
hand, the second and the third umecevian points are so complicated
that I don't think that there are more cases where P and Q' are in
ETC.
Something more interesting: If P transverses a line, what curve make
Q, Q' and Q" ??
Sincerely,
Darij Grinberg
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου